

	1. General Information							
Faculty	Faculty of Foreign Students							
Programme	22 Healthcare, 221 Dentistry, the 2 nd (master) level of higher							
	education, full-time							
Academic year	2023-2024							
Subject	Modern problems of biophysics							
-	1.27							
	Kaf_biophysics@meduniv.lviv.ua							
Department	Department of Biophysics							
-	79010, Lviv, 3a Shymzeriv							
	tel.: +38 (032) 275-58-76							
	Kaf_biophysics@meduniv.lviv.ua							
Head of the	Roman Fafula, Dr.Sci., Professor,							
Department	Kaf_biophysics@meduniv.lviv.ua							
Year	Ι							
Semester	Ι							
Type of the Subject	elective course							
Professors	Roman Fafula, Dr.Sci., Professor,							
	fafula_roman@meduniv.lviv.ua							
Erasmus	_							
Responsible for	Roman Fafula, Dr.Sci., Professor,							
Syllabus	fafula_roman@meduniv.lviv.ua							
Credits ECTS	3.0							
Hours	In total – 90 h.: lectures — 12 h.; practical classes – 18 h.; individual							
	work – 60 h.							
Language of study	English							
Consultations	According to the schedule							
	2. Brief review of the subject							

According to the educational and professional program the discipline "Modern problems of biophysics" is one of the fundamental natural science disciplines that form the theoretical basis for the training of highly qualified specialists in medicine.

The subject of study of the discipline "Modern problems of biophysics" (elective course) is the study of the physical properties of macromolecules, biophysical methods of cell research, the physical foundations of methods of biomacromolecule research, modern technologies and systems that use the properties of X-rays, nuclear magnetic resonance and induced radiation used in biomedical practice.

Discipline "Modern problems of biophysics" (elective course) as a fundamental discipline is quite complex, and for its assimilation various forms of lectures, laboratory, practical classes and individual work of students are used.

According to the curriculum, the discipline "Modern problems of biophysics" (elective course) is studied by the first year students. The academic program of the discipline is divided into 2 chapters:

Chapter 1. Fundamentals of molecular biophysics of cells and tissues.

Chapter 2. Application of biophysical technologies in biomedical research

The proposed discipline provides: compliance of the content of industry standards of higher

education through the direct connection of its content with the goals of higher education; compliance with licensing and accreditation conditions and requirements; compliance with "Standards and Guidelines for Quality Assurance in the European Higher Education Area"; the possibility of using the competencies formed by medical and biological physics as a foundation for the formation of professional competencies of the future specialist; unambiguity of criteria for assessing academic achievement.

3. Purpose and objectives of the course

The objective of teaching the discipline "Modern problems of biophysics" (elective course) is introducing students to modern problems of molecular biophysics and the latest achievements in the field of medical and biological physics, prospects for its application in biomedical practice.

- The main learning tasks of the discipline "Modern problems of biophysics" (elective course) are:
 - \checkmark elucidation of the physical mechanisms underlying the biological functions of biomacromolecules;
 - ✓ definition of the main methods used to study the structure and activity of biomacromolecules;
 - ✓ physical phenomena underlying diagnostic and physiotherapeutic (treatment) methods used in biomedical practice.

Achieving these goals will allow a medical students to master the physical, biophysical, technical and mathematical knowledge and skills which are necessary for training a doctor and for study of other theoretical and clinical disciplines in the higher medical educational establishments and ensure the formation of general and special competencies and learning outcomes.

Integral competence:

The ability to solve complex problems, including those of a research and innovation nature in the field of medicine. Ability to continue learning with a high degree of autonomy.

General competences:

- GC 1 The ability for abstract thinking, analysis and synthesis.
- GC 2 Ability to learn and master modern knowledge.
- GC 3 The ability to apply knowledge in practical situations.
- GC 4 Knowledge and understanding of the subject area and understanding of the professional activities.
- GC 5 Ability to adapt and act in a new situation.
- GC 6 Ability to make informed decisions.
- GC 7 Ability to work in a team.
- GC 8 Interpersonal skills.
- GC 9 Ability to communicate in a foreign language.
- GC 10 Skills in using information and communication technologies.
- GC 11 Ability to search, process and analyze information from various sources.

GC 12 Definiteness and perseverance to the tasks and assumed responsibilities.

Special (professional) competences:

- PC 2 Ability to determine the required list of laboratory and instrumental studies and evaluate their results.
- PC 10 Ability to perform medical procedures.
- PC 17 Ability to assess the impact of the environment, socio-economic and biological determinants on the health of the individual, family and population.

Integrative final program learning outcomes (PLO) of the discipline "Modern problems of biophysics" are:

- PLO 1. Have thorough knowledge of the structure of professional activity. To be able to carry out professional activities that require updating and integration of knowledge. To take responsibility for professional development, the ability for further professional training with a high level of autonomy (GC1 GC12, FC2, FC10, FC17).
- PLO 2. Understanding and knowledge of fundamental and clinical biomedical sciences at a level sufficient for solving professional tasks in the field of health care (GC4, GC6, GC10 GC12, FC2, FC10, FC17).
- PLO 3. Specialized conceptual knowledge, which includes scientific achievements in the field of

	health care and is the basis for research, critical understanding of medicine and related interdisciplinary problems (GC1 – GC3, G	-					
	FC2). . Assess the impact of the environment on the state of human health	th in order to estimate the					
	morbidity pattern of the population (FC17).						
	PLO 24. Organize the necessary level of individual safety (own and persons cared for) in case of						
1	typical dangerous situations in the individual field of activity (CG6)).					
1 Vnorv	4. Preliminary requirements	a company of the company					
	ledge of basic concepts, laws, essence of phenomena, values of m h school physics.	easurement in the course					
-	ledge of human anatomy and physiology in the course of high school	ol biology					
	ledge of the electronic structure of the atom and the nature of chem	•••					
chemi	-						
	le to think abstractly, analyze and the ability to synthesize knowledge	ge.					
	le to apply knowledge in practice.						
6. Abilit	y to search, process and analyze information from various sources.						
	5. Final program learning outcomes						
	Learning outcomes						
Code	Outcomes	Matrix of competencies					
3H-1	general physical and biophysical regularities that underlie human life;	PLO 1, PLO 2, PLO 3					
<i>3H-2</i>	the physical bases and biophysical mechanisms of external factors (fields) effects on the human body systems;	PLO 23, PLO 24					
3H-3	physical phenomena that underlie diagnostic and physiotherapeutic (therapeutic) methods used in medical practice;	PLO 1, PLO 2, PLO 3, PLO 23, PLO 24					
<i>УМ-1</i>	analyze physical processes in the body, using physical laws and phenomena;	PLO 1, PLO 2, PLO 3					
УМ-2	to analyze the mechanisms of interaction of physical factors of the external environment with the human body;	PLO 23, PLO 24					
УМ-3	demonstrate the ability to choose the method of instrumental research according to the task;	PLO 1, PLO 2, PLO 3, PLO 23, PLO 24					
УМ-4	<i>YM-4</i> demonstrate skills in working with medical equipment used for medical imaging and therapy, including ultrasound diagnostics, electrocardiography, rheography, audiometry, physiotherapy devices, optical and quantum-mechanical devices and systems, radiometric and dosimetric control devices;						
УМ-5	explain the principle of operation of medical equipment.	PLO 1, PLO 2, PLO 3, PLO 23, PLO 24					
К-1	ability to apply knowledge in practical situations;	PLO 1, PLO 2, PLO 3,					
	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	<i>PLO 23, PLO 24</i>					
К-2	ability to carry out research at the appropriate level.						
AB-1	experience of individual subject activity, educational-cognitive, analytical, ability to synthesis of knowledge;	PLO 1, PLO 2, PLO 3, PLO 23, PLO 24					
AB-2	ability to self-study and continue professional development;						

AB-3	3 a	bility to control,	self-control of learning outcomes.					
			6. Course content					
	Co	ourse	full-time form of stu	dy				
	Cl	asses	Hours	Number of groups				
Lectu	res (L)		12		1			
Pract	ical class	ses (PC)	18		1			
Indiv	idual wo	ork (IW)	60		1			
			7. Course content					
Code		Торіс	Content	Code	Professors			
L-1	Biologi macrom solutior	nolecules in	Biological macromolecules in solution. Conformation of macromolecules. Intramolecular interactions in biological macromolecules. Hydrophobic interactions and water structure. Viscosity of solutions of biomacromolecules. Diffusion of macromolecules. Quasi-elastic scattering of light. Interaction between macromolecules	3H-1 УМ-1	Roman Fafula			
L-2	1.0	sics of proteins eleic acids.	in saline solution. Biophysics of proteins. Kinetics of enzymatic reactions. Activation energy. Biophysics of nucleic acids. Hyperchromic effect.	3H-1 УМ-1	Roman Fafula			
L-3	method determi structur	ning the	Biophysical methods of biopolymer research. Electrophoresis of macromolecules. Sedimentation of macromolecules. Centrifugation. Chromatographic method: gel filtration. Dispersion of optical rotation and circular dichroism. Differential scanning microcalorimetry.	3H-1 3H-3 УМ-1 УМ-2 УМ-3 УМ-4 УМ-5	Roman Fafula			
L-4	1.4	sical principles y diagnostics.	X-ray computed tomography (CT). Image reproduction in CT. Spatial resolution of CT. Three-dimensional image. A side effect of a CT scan.	3H-2 3H-3 YM-1 YM-2 YM-3 YM-4 YM-5	Roman Fafula			
L-5	of magn	sical principles netic resonance g and positron n tomography.	The phenomenon of nuclear magnetic resonance (NMR). Relaxation. Biophysical bases of magnetic resonance diagnostics. The concept of NMR spectroscopy. Magnetic resonance imaging: scanning and image reconstruction; image parameters. Diagnostic capabilities of NMR tomography. Biophysical principles of positron emission tomography.	3H-2 3H-3 УМ-1 УМ-2 УМ-3 УМ-4 УМ-5	Roman Fafula			
L-6	applicat	sical basis of tion of laser ogies in ne.	Basic properties of laser radiation. High power lasers and their interaction with biological tissues. Interaction of powerful lasers with biological tissues. The thermal effect of laser radiation on biological	3H-1 3H-2 3H-3 YM-1 YM-2	Roman Fafula			

PC-1	Fundamentals of molecular biophysics.	tissues. Low power lasers. Cellular mechanisms of photobiomodulation. Cell reaction to radiation. Classification of lasers and safety requirements. Types of damage to biological tissues. Laser technologies in biomedical practice: laser-induced fluorescence; laser profilometry. Biological macromolecules in solution. Conformation of macromolecules. Intramolecular interactions in biological macromolecules. Hydrophobic interactions and water structure. Viscosity of solutions of biomacromolecules. Diffusion of macromolecules. Quasi-elastic scattering of light. Interaction between macromolecules	УМ-3 УМ-4 УМ-5 ЗН-1 УМ-1	Roman Fafula
PC- 2	Biophysics of proteins and nucleic acids.	in saline solution Biophysics of proteins. Kinetics of enzymatic reactions. Activation energy. Biophysics of nucleic acids. Hyperchromic effect.	3H-1 УМ-1	Roman Fafula
PC- 3	Sedimentation and electrophoresis of biological macromolecules.	Biophysical methods of biopolymer research. Electrophoresis of macromolecules. Sedimentation of macromolecules. Centrifugation.	3H-1 УМ-2	Roman Fafula
PC- 4	X-ray structural analysis of biological macromolecules.	Biophysical methods of studying the structure of macroparticles. X-ray structural analysis.	3H-1 УМ-2	Roman Fafula
PC -5	Molecular spectroscopy of macromolecules. Fluorescence spectroscopy.	Biophysical methods of studying the structure of macroparticles. Molecular spectroscopy of macromolecules. Fluorescence spectroscopy.	3H-1 УМ-2 УМ-3	Roman Fafula
PC -6	Modern methods of electron microscopy.	Electron microscopy. The working principle of the electron microscope. The main types of electron microscopes. Methods of preparing samples and obtaining contrast images. Application of modern electron microscopes in medicine. Study of the surface of isolated cells. Electron microscopy of viruses and bacteria.	3H-1 УМ-2 УМ-3 УМ-5	
PC -7	Biophysical principles of X-ray diagnostics.	X-ray computed tomography (CT). Image reproduction in CT. Spatial resolution of CT. Three-dimensional image. A side effect of a CT scan.	3H-1 3H-3 УМ-2 УМ-3 УМ-4 УМ-5	Roman Fafula
PC -8	Biophysical principles of magnetic resonance diagnostics.	The phenomenon of nuclear magnetic resonance (NMR). Relaxation. Biophysical bases of magnetic resonance diagnostics. The concept of NMR spectroscopy. Magnetic resonance imaging: scanning and	3H-1 3H-3 УМ-2 УМ-3 УМ-4	Roman Fafula

		image reconstruction; image parameters.	УМ-5	
		Diagnostic capabilities of NMR	J 1VI-J	
		tomography. Biophysical principles of		
		positron emission tomography.		
PC	Biophysical principles	Basic properties of laser radiation. High	3H-1	Roman Fafula
-9	of laser diagnostics	power lasers and their interaction with	3H-3	Koman Fatula
-)	and therapy.	biological tissues. Interaction of powerful	УМ-1	
	and merapy.	lasers with biological tissues. The thermal	УМ-1 УМ-3	
		effect of laser radiation on biological	УМ-3 УМ-4	
		tissues. Low power lasers. Cellular	УМ-4 УМ-5	
		mechanisms of photobiomodulation. Cell	5 101 5	
		reaction to radiation. Classification of lasers		
		and safety requirements. Types of damage		
		to biological tissues. Laser technologies in		
		biomedical practice: laser-induced		
		fluorescence; laser profilometry.		
IW-	Objects of research in	Biological macromolecules in solution.	3H-1	Roman Fafula
1	molecular biophysics.	Conformation of macromolecules.	УМ-1	
IW-		Intramolecular interactions in biological	3H-1	Roman Fafula
2	interactions and forces	macromolecules. Hydrophobic interactions	УМ-1	
	stabilizing the	and water structure. Viscosity of solutions		
	structure of	of biomacromolecules. Diffusion of		
	biomacromolecules.	macromolecules. Quasi-elastic scattering of		
		light. Interaction between macromolecules		
		in saline solution.		
IW-	The main types of	Intramolecular interactions in biological	3H-1	Roman Fafula
3	interactions that form	macromolecules. Hydrophobic interactions	УМ-1	
	biological membranes.	and water structure. Viscosity of solutions		
		of biomacromolecules. Diffusion of		
		macromolecules. Quasi-elastic scattering of		
		light. Interaction between macromolecules		
		in saline solution.		
IW-	Rheometry of	Rheometry of nucleic acids and proteins.	3H-1	Roman Fafula
4	biomacromolecules.		УМ-1	
IW	Dispersion of optical	Dispersion of optical rotation and circular	3H-1	Roman Fafula
-5	rotation and circular	dichroism.	3H-3	
	dichroism.		УМ-1	
			УМ-4 УМ-5	
1337	<u>Olamana 1</u>		УМ-5 ЭЦ 1	
IW	Chromatographic	Chromatographic method: gel filtration.	3H-1	Roman Fafula
-6	method in the study of		УМ-1 VM 12	
	biomacropolymers.		УМ-13	
IW	Application of modern	Electron microscopy. The working	3H-1	Roman Fafula
-7	methods of electron	principle of the electron microscope. The	УМ-1	Roman Fatula
'	microscopy in	main types of electron microscope. The	УМ-1 УМ-5	
	medicine.	Methods of preparing samples and	5 101-5	
		obtaining contrast images. Application of		
		modern electron microscopes in medicine.		
		Study of the surface of isolated cells.		
		Electron microscopy of viruses and		
		bacteria.		
IW	Study of biopolymers	Differential scanning microcalorimetry.	3H-1	Roman Fafula
-8	by differential	, , , , , , , , , , , , , , , , , , ,	УМ-1	
J	- j			1

	scanning microcalorimetry.		УМ-5	
IW -9	Physical principles of X-ray transmission computed tomography.	Physical principles of X-ray transmission computed tomography.	3H-2 3H-3 УМ-2 УМ-3 УМ-4 УМ-5	Roman Fafula
IW -10	Laser microspectral analysis in research.	Laser microspectral analysis in research.	3H-2 3H-3 УМ-2 УМ-3 УМ-4 УМ-5	Roman Fafula

The following *teaching methods are used during practical classes*: verbal methods (lecture, discussion); visual methods (illustration, demonstration, frontal experiment); practical methods (laboratory work and solving of problems with professional content); individual work of students with comprehension and learning of material; use of control and training computer software in the discipline; use of project method for interdisciplinary integration.

8. Verification of results

Current control is realized on the basis of the control of theoretical knowledge, skills and abilities. Forms of current control: oral survey (frontal, individual, combined survey), practical test of formed professional skills, test control (open and closed tests).

Individual work of students is evaluated on practical classes and is part of the final grade of the student. The final grade for the current educational activity is set on a 4-point (traditional) scale.

Criteria of evaluation

- ✓ grade 5/"excellent" the student has mastered the theory flawlessly, demonstrates deep and comprehensive knowledge of the certain topic or academic discipline, the main theses of scientific papers and recommended literature, thinks logically and gives an answer, freely uses the acquired theoretical knowledge when analyzing practical material, expresses his attitude to certain problems, demonstrates a high level of mastery of practical skills;
- ✓ grade 4/"good" the student has mastered the theoretical material well, knows the main aspects from primary sources and recommended literature, presents it in a reasoned way; has practical skills, expresses his thoughts on certain issues, but certain inaccuracies and errors are assumed in the logic of the presentation of theoretical content or in the performance of practical skills;
- ✓ grade 3/"satisfactory" the student has basically mastered the theoretical knowledge of the topic or discipline, orients himself in primary sources and recommended literature, but answers unconvincingly, confuses concepts, additional questions cause the student uncertainty or lack of stable knowledge; when answering questions of a practical nature, reveals inaccuracies in knowledge, does not know how to evaluate facts and phenomena, relate them with future activities, makes mistakes when performing practical skills;
- ✓ grade 2/"unsatisfactory" the student has not mastered the material of the topic (discipline), does not know scientific facts, definitions, hardly orients himself in primary sources and recommended literature, lacks scientific thinking, practical skills are not formed.

Code	Code	Verification	Criteria
3H-1 – 3H-3,	L-1-6, PC-1-9,	Test control on the MISA platform	Test control:
УМ-1 – УМ-5,	IW-1-10.	(10-15 test tasks with one correct	50-69% – satisfactory;
K-1 – K-2		answer);	70-89% – good;
AB-1 – AB-2			90-100% – excellent.
		Oral survey and/or written control –	Oral survey and/or
		theoretical questions (including	written control:
		questions on individual	evaluation according to

		work) and tasks of medical and biological content	evaluation criteria
		Practical skills / report on laboratory work.	Practical skills / report on laboratory work: passed / failed
		The final test	
General evaluation	Participatio	on on practical classes during the semest	er is 100% on a 200-point
system	scale.		_
Scales	Traditional	4-point scale, 200-points scale, ECTS	
The conditions of	The studen	t attended all practical (laboratory) class	es and received at least 120
access to the	points for c	current educational activity.	
differential test			
Type of a final		Verification	Criteria
examination			
		ria of evaluation for the pass-fail test	
Pass-fail test		s-fail test is a form of the final control,	
		sists in assessing the student's mastery	
		onal material in the discipline on the	
		e average score of the results of current	
		l scores for individual control tasks in	
	the final le		
		topics submitted for current control	
		cluded. Grades from a 4-point scale are	
		nto points on a multi-point (200-point)	
		cordance with the Regulation "Criteria,	
	-	procedures for evaluating the results of	
	students ed	lucational activities".	

The highest possible score points which a student can obtain for the current educational activity is 200 points.

Minimal number of score points which a student must obtain for current educational activity is 120 points.

Calculation of the points number is based on grades received by student by the traditional scale (by calculation of the arithmetic mean (AM) rounded to two decimal places). The resulting value is converted into points by multi-points scale as follows:

$$x = \frac{AM \times 200}{5}$$

For convenience, the table of recalculation on a 200-point scale is given:

Conversion of the average grade for current educational activity to the point scale for discipline which is finished with exam

4-	200-	4-	200-	4-	200-	4-	200-
бальна							
шкала							
5	200	4.45	178	3.92	157	3.37	135
4.97	199	4.42	177	3.89	156	3.35	134
4.95	198	4.4	176	3.87	155	3.32	133
4.92	197	4.37	175	3.84	154	3.3	132
4.9	196	4.35	174	3.82	153	3.27	131
4.87	195	4.32	173	3.79	152	3.25	130
4.85	194	4.3	172	3.77	151	3.22	129
4.82	193	4.27	171	3.74	150	3.2	128

4.8	192	4.24	170	3.72	149		3.17	127
4.77	191	4.22	169	3.7	148		3.15	126
4.75	190	4.19	168	3.67	147		3.12	125
4.72	189	4.17	167	3.65	146		3.1	124
4.7	188	4.14	166	3.62	145		3.07	123
4.67	187	4.12	165	3.57	143		3.02	121
4.65	186	4.09	164	3.55	142		3	120
4.62	185	4.07	163	3.52	141		Менше 3	Недостатньо
4.6	184	4.04	162	3.5	140			
4.57	183	4.02	161	3.47	139			
4.52	181	3.99	160	3.45	138			
4.5	180	3.97	159	3.42	137			
4.47	179	3.94	158	3.4	136]		

Students obtain a semester credit if the average grade for current academic activity during the semester is at least "3" (120 points on a 200-point scale).

Points on discipline are converted regardless both in ECTS scale and a 4-point scale. Scores of ECTS scale can not be converted into 4-point scale and vice versa. Scores of students taking into account the number of points on the discipline are ranked on a ECTS scale so that:

Grade in ECTS	Statistical index
А	Top 10% of students
В	The next 25% of students
С	The next 30% of students
D	The next 25% of students
Е	The last 10% of students

Ranking with assigning grades of "A", "B", "C", "D", "E" is held for the students of one course, studying one specialty and successfully completed the academic discipline. Students who have received grades FX, F ("2") are not recorded to the list of students for ranking. Students who have received grade FX after repassing automatically get grade "E".

For students who completed the program successfully the points on discipline are converted into a traditional 4-point scale by absolute criteria, which are listed in the table below:

Points on discipline	Grade in 4-point scale
From170 to 200 points	5
From 140 to 169 points	4
From 122 to 139 points	3
Lower than minimum number of points that a	2
student must score	
9. Course poli	CV

Student attendance is required.

The missed practical class are making up according to an appropriate schedule agreed on the department.

The policy of academic integrity.

Use any material or aid (including cell phone etc) during the period of test/exam is prohibited.

The policy of academic discipline is based on the principles of academic integrity. The student is obliged to fully master the knowledge, skills, practical skills and competencies of this discipline.

Policy on compliance with the principles of academic integrity of students of higher education:

- ✓ individual performance of educational tasks of current and final controls without using external sources of information, except for cases permitted by the teacher;
- \checkmark cheating during control is prohibited (including using mobile devices).

Educational policy:

attendance at all classes is mandatory for the purpose of current and final assessment of

knowledge (except for respectable reason);

- ✓ missed classes are reworked according to the approved schedule;
- ✓ repass the topic for which the student received a negative grade is carried out at a time convenient for the teacher and the student;
- \checkmark it is not allowed to repass the topic in order to impove the grade during the current and final control.

10. Books

Main sources:

- 1. Chalyi A.V., Tsekhmister Ya.V., Agapov B.T. Medical and Biological Physics: textbook for the students of higher medical institutions of the IV accreditation level. Vinnytsia, Nova Knyha, 2010. 480 p.
- 2. Davidovits P. Physics in biology and medicine. 5th ed. Amsterdam: Elsevier Academic Press, 2019. 377 p.
- 3. Herman I.P. Physics of the Human Body. Springer, 2008. 860 p.
- 4. Hobie R.K., Roth B.J. Intermediate Physics for Medicine and Biology. Springer, 2007. 616 p.
- Medical and Biological Physics: Laboratory Manual for students of higher medical institutions of the IV accreditation level // Lychkovsky E., Fafula R., Fedorovych Z., Makar N., Odnorih L. – Lviv, Danylo Halytsky Lviv National Medical University, 2014. – 300 p.
- 6. Newman J. Physics of the Life Sciences. Springer, 2008. 718 p.

Additional sources:

- 1. Cotterill R. Biophysics. An introduction. J. Wiley & Sons, 2002. 396 p.
- 2. Glaser R., Biophysics, Springer, 2004.
- 3. Hendee W., Ritenour R. Medical imaging physics. J.Wiley&Sons, 2002.

11. Equipment, and software of the discipline / subject

- \checkmark academic program of the discipline;
- \checkmark lecture notes on discipline (thesis);
- ✓ lecture presentations;
- ✓ guidelines for lecturers/instructors;
- ✓ guidelines for practical classes for students;
- ✓ guidelines for individual students' work;
- \checkmark test and control tasks for practical classes;
- \checkmark questions and tasks for the final control (exam).

12. Additional information

Curriculum coordinator – Oksana Malanchuk, PhD, Associate Professor, <u>oksana.malan@gmail.com</u> Responsible for students' science club of department – Marianna Paykush, Dr.Sci., Associate Professor, <u>marianna.gron@gmail.com</u>

Web page of the department: <u>https://new.meduniv.lviv.ua/en/kafedry/kafedra-biofizyky/</u>

Responsible for Syllabus Roman Fafula, Dr.Sci., Professor

Head of the Department Roman Fafula, Dr.Sci., Professor