

SYLLABUS OF THE ACADEMIC DISCIPLINE

«MODERN PROBLEMS OF MOLECULAR BIOLOGY»

1.	. General Information	
Faculty	Faculty of Foreign Students	
Education Programme	22 Healthcare 222 Medicine 2nd (master's) degree of Higher Education, full-time	
Academic year	2023-2024	
Discipline, code	Modern problems of molecular biology, code BE 1.28 e-mail: Kaf_medicalbiology@meduniv.lviv.ua	
Department	Department of Medical Biology, Parasitology and Genetics Adress: 79010, Lviv, Pekarska str., 69 (Shimzeriv, 3 a) ph +380(32)275-49-66 e-mail: Kaf medicalbiology@meduniv.lviv.ua e-mail: kaf med biol@ukr.net	
Head of the Department (e-mail)	Vorobets Zinovij Dmytrovych, Doctor of Biological Sciences, Professor e-mail: Kaf_medicalbiology@meduniv.lviv.ua	
Studying year	I course	
Semester	I	
Type of discipline (obligatory / selective)	selective	
Educators	Solomiya Paryzhak – Ph.D., Assoc. Prof. sola.paryzhak@gmail.com; Olena Onufrovych – Ph.D., Assoc. Prof. onufrovychok@ukr.net	
Erasmus yes/no	No	
Person, responsible for syllabus	Solomiya Paryzhak – Ph.D., Assoc. Prof. sola.paryzhak@gmail.com Lydmyla Serhiyenko – Ph.D., Assoc. Prof. serhiyenkol@gmail.com	
Quantity of ECTS credits	3	
Quantity of hours (lectures/ practical classes/ individual work)	Total – 90 h Lectures – 12 h; Practical classes – 18 h; Individual student's work – 60 h	
Language of instruction	English	
Information about consultations	According to the schedule	

2. Course overview

«Modern problems of molecular biology» (selective course) as a discipline is studied by the I year students. It is based on «General biology» subject, which the students are supposed to know from their previous secondary school learning and is integrated with «Medical biology, parasitology and genetics» discipline. The Working Program contains such chapters: «Molecular basis of heredity», «Molecular basis of hereditary diseases», «Modern issues of genetic technologies». The discipline «Modern problems of molecular biology», is fundamental for the next block of disciplines, which ensure a range of subjects providing both natural-science (NS unit) and professional-practical (PP unit) preparation of Higher Medical Institution graduates and are based on the essence of system theoretical knowledge, practical skills necessary for doctors.

3. Aim and goals of the course

The aim of the course is to form knowledge and practical aptitude for further students' mastering the block of relevant disciplines, which provide natural-science (NS unit) and professional-practical (PP unit) preparation for understanding modern problems as well as achivements of molecular medicine.

The ultimate goals

- 1. To explain the patterns of human organism vital functions manifestation at the molecular-biological and cellular levels.
- 2. To identify the manifestations of general biological laws during human ontogenesis.
- 3. To understand the molecular-genetic basis for the development of hereditary and multifactorial diseases, prospects for the application of advances in molecular biology in practical medicine.
- 4. To explain the nature and mechanisms of inherited human diseases phenotypic manifestation.

Competencies and studying process results

Integral competence. The ability to solve complex problems, including research and innovation in medicine. The ability to continue learning with a high degree of autonomy.

General (3K):

- 3K 1. The ability for abstract thinking, analysis and synthesis.
- 3K 2. The ability to learn and acquire advanced knowledge.
- 3K 3. The ability to apply knowledge in practical situations;
- 3K 4. Knowledge and understanding of the subject area and understanding of professional activity.
- 3K 5. The ability to adapt and act in a new situation.
- 3K 6. The ability to make responsible decisions.
- 3K 7. The ability to work as a team member.
- 3K 8. Skills of interpersonal interaction.
- 3K 9. The ability to communicate in the foreign language.
- 3K 10. The ability to apply information and communication technologies.
- 3K 11. The ability to search, process and analyze information from various sources.
- 3K 12. To be determined and insistent in according to tasks and responsibilities.
- 3K 13. Awareness of equal opportunities and gender issues.
- 3K 14. The ability to realize the own rights and responsibilities as a member of society, to recognize the values of civil (free democratic) society and the need for its sustainable development, the rule of law, human and civil rights and freedoms in Ukraine.
- 3K 15. The ability to preserve and multiply the moral, cultural, scientific values and achievements of society based on understanding the history and patterns of development of the subject area, its place in the general system of knowledge about nature and society and in the development of society, techniques and technologies, to use different types and forms of motor skills for recreation and a healthy lifestyle.

Special (professional) (ΦK):

- Φ K 2. The ability to determine the necessary list of laboratory and instrumental studies and evaluate their results.
- ΦK 13. The ability to carry out sanitary and hygienic and preventive measures.
- ΦΚ 17. The ability to evaluate the impact of the environmental, socio-economic and biological determinants on the individual, family and population health.
- ΦK 21. To convey one's own knowledge clearly and nonambiguous, conclusions and arguments on health care problems and related issues to specialists and non-specialists, in particular to people who are studying.
- ΦK 24. Compliance with ethical principles when working with patients and laboratory animals.
- ΦK 25. Adherence to the values of professional and academic integrity, to be responsible for the reliability of the obtained scientific results.

Program learning outcomes in accordance with the standards of higher education:

- ΠΡΗ 1. To have thorough knowledge of the professional activity structure. To be able to carry out professional activities that require updating and integration of knowledge. To be responsible for professional development, the ability for further professional training with a high level of autonomy.
- ΠΡΗ 2. Understanding and knowledge of basic and clinical biomedical sciences, at a level sufficient for solving professional tasks in the field of health care.
- ΠΡΗ 19. To plan and to implement a system of anti-epidemic and preventive measures regarding the occurrence and spread of diseases among the population.
- ΠΡΗ 21. To collect information the necessary information in the professional literature and databases of other sources, to analyze, to evaluate and to apply this information.
- ΠΡΗ 23. To evaluate the environmental impact on human health in order to assess the morbidity of the population.
- ΠPH 25. To convey one's own knowledge, conclusions and arguments on health care problems and related issues to specialists and non-specialists clearly and nonambiguous.
- ΠΡΗ 27. To communicate freely in the state language and in English, both orally and in writing to discuss professional activities, research and projects.

4. Preliminary requirements

For successful learning and gaining necessary competencies in the discipline being studied, fundamental knowledge of biology (such subjects as "General Biology", "Human Biology",) in accordance with State standard for basic general secondary education is advisable.

5. Program learning results

List of the learning results

Code of education results	Essence of education results	Matrix of competencie s
3н – knowledge		ПР —
Ум – skills		program
AB – independence		learning
and responsibility		outcomes
K – competencies		
3н-1	To know the role of nucleic acids in the storage and	ПРН- 1,
	realization of hereditary information.	

Classes	Hours	Groups
Course format	Full-time Course	
AB-2	Be responsible for the measures that preserve the environment within its own competence. 6. Course format and content	
AB-1	Be responsible for mastering the relevant knowledge and content.	
K-4	To use the own professional activities for the environmental protection.	
K-3	To apply knowledge of modern advances in molecular biology in practical medicine.	
K-2	To interpret the importance of molecular-genetic methods for the diagnosis of hereditary and infectious diseases in forensic medicine.	
K-1	To apply knowledge of molecular and cytological basis of heredity in practical activity of a doctor.	
Ум-5	Be able to solve situational problems, to identify the primary structure of the protein, the number of amino acids, the molecular weight of the polypeptide according to the gene structure encoding it	
Ум-4	Be able to explain the importance of the cloning method for biology and medicine.	
Ум-3	Be able to explain the importance of mutagenic factors of different nature for the formation of molecular and chromosomal human diseases.	
Ум-2	Be able to classify the forms of variability, to distinguish between gene, chromosomal and genome mutations.	
Ум-1	Be able to explain the relationship between the molecular structure of a gene and its expression.	
Зн-8	To know the nucleic acid methods investigation, DNA diagnostics, genetic engineering.	
Зн-7	To know the basic mechanisms of apoptosis.	
3н-6	action and methods of mutagenic activity studying. To know modern methods of the human genome study.	
3н-5	To know the pecular mechanisms of mutagenic factors	
3н-4	realization in a cell, as well as its regulation in pro- and eukaryotes. To know the peculareties of human genome organization.	ПРН-25
3н-3	repair of DNA processes in the human body in norm and in pathology. To know the molecular mechanisms of genetic information	ПРН- 21, ПРН- 23,
Зн-2	To know the importance of replication, recombination and	ПРН -2,

lectures	12	
practical	18	
individual	60	

7. Topics and content of the Course

Code of the classes type	Topic	Content	Code of the	Educator
classes type			learning outcomes	
Л – lecture П – practical class CPC – individual student's work Л-1	Subject and	To acquaint students with the	Зн-1,	Assoc. Prof.
	tasks of molecular biology. The main stages of development. Prospects for the application of modern advances in molecular biology in clinical medicine.	subject and tasks of molecular biology; stages of development; achievements; the possibility of application in clinical medicine.	3н-8, К-1, К-2, К-3, АВ-1	Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.
Л-2	Nucleic acids and their role in the storage of hereditary information.	Chemical composition of DNA, RNA; macromolecular organization. Types of DNA helices. Types of RNA and their biological functions. Molecular mechanisms of DNA recombination, replication and repair. DNA replication as a prerequisite for the transmission of genetic information to offspring. Characteristics of the process of replication, reparation.	Зн-1, Зн-2, К-1, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.
Л-3	Genomic organization in non- cellular and cellular organisms. Regulation of	To consider the structure and functions of viral genomes, the Lac operon of <i>E. coli</i> and the exon-intron organization of the eukaryotic genome. Control of gene expression in proand eukaryotes. Regulation at the	Зн-3, Зн-4 AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.

Л-4	gene expression. Cell cycle.	level of translation and post-translation processes. To consider the mitotic cycle, its	Зн-5,	Assoc. Prof.
	Genetic mechanisms of carcinogenesi s. Regulation of the cell cycle.	regulation. The role of cyclins and cyclin-dependent kinases. Principles of mitotic signal transmission. The role of growth factors, integrins and cadherins. Characteristics of genes involved in carcinogenesis: viral oncogenes, protooncogenes, tumor suppressor genes, mutator genes. Carcinogenic factors.	Зн-7, AB-1, AB-2	Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.
Л-5	Genetic engineering. Transgenic organisms. Gene therapy: prospects for application in medicine.	Recombinant DNA, principles of their construction. Cloning of nucleic acid fragments in vivo. Definition of the concept of vector in biology. Vectors: plasmids, bacteriophages, cosmids, artificial chromosomes. Principles of construction of transgenic organisms. Transgenic bacteria, plants, animals. Principles of gene therapy. Ex vivo and in vivo gene therapy. Viral and non-viral vectors in chemotherapy. Prospects and limitations of gene therapy.	Зн-6, Зн-8, К-2, К-3, АВ-1, АВ-2	Assoc. Prof. Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.
Л-6	Cell engineering. Cloning of organisms. Biological and ethical problems of cloning.	The concept of cloning. Natural and artificial clones. History of organisms cloning. Biological and ethical problems of cloning. Therapeutic cloning and its prospects in medicine.	3н-6, 3н-8, К-2, К-3, AB-1, AB-2	Assoc. Prof. Paryzhak S.Ya., Assoc. Prof. Onufrovych O.K.
П-1	Molecular mechanisms of DNA replication.	Characteristics of the DNA replication process. Events occurring in the replication fork. Replication error correction system.	Зн-2, Ум-5, К-1, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-2	DNA repair. Mechanisms of damaged DNA repair. Hereditary diseases with defects in DNA repair.	To consider the types and molecular mechanisms of DNA repair. Excisional, non-excisive, recombinant reparation. The concept of DNA repair diseases	Зн-2, Ум-3, К-1, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.

П-3	Genome	Organization of the viral ganomas	Зн-3,	Assoc. Prof.
	Genome structure and molecular mechanisms of gene expression in viruses.	Organization of the viral genomes. The concept of the lysogenic and lytic cycles of viruses. Peculiarities of the retroviruses genome and life cycle.	Ум-1, К-1, AB-1	Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-4	Genome structure and molecular mechanisms of gene expression in pro- and eukaryotes.	Current state of pro- and eukaryotic genomes study. Regulation of gene expression in prokaryotes. Catabolic and anabolic operons of bacteria. Control of gene expression in eukaryotes. Regulation of gene expression at the structural organization level, at the level of transcription and translation.	Зн-3, Ум-1, К-1, К-2, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-5	Human genome organization.	«Human Genome» Project. Nuclear and mitochondrial genome. Features of the human genome. The main ways of the human genome research: structural, functional, comparative, informative. Knowledge of the human genome opens new perspectives in the diagnosis and treatment of inherited human diseases.	3н-4, 3н-6, Ум-1, К-1, К-2, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-6	Molecular mechanisms of mutations.	Classification of gene mutations. The concept of monogenic hereditary diseases. Molecular and cytological mechanisms of chromosomal mutations. Classification of mutations. Generative and somatic mutations. Mutagenic factors, methods for determining the mutagenic activity of substances. Antimutagenesis.	Зн-5, Ум-2, Ум-3, К-2, К-3, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-7	Regulation of the cell cycle. Molecular basis of oncogenetics.	To consider the mitotic cycle, its regulation. The role of cyclins and cyclin-dependent kinases in changing the phases of the mitotic cycle. Mitogenic signaling pathways. Characteristics of genes involved in carcinogenesis: viral oncogenes, protooncogenes, tumor suppressor genes, mutator genes. Carcinogenic factors.	3н-5, 3н-7, Ум-3, К-2, AB-1, AB-2	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
П-8	Gene therapy. Transgenic organisms.	Principles of gene therapy. Ex vivo and in vivo gene therapy. Viral and non-viral vectors in gene therapy. Prospects and limitations of gene therapy.	3н-8, Ум-4, К-2, К-3, К-4, AB-1,	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.

	4			
П-9	Cloning of organisms and cells. Therapeutic cloning and its prospects in medicine.	Principles of construction of transgenic organisms. Transgenic bacteria: the main areas of application in the national economy and medicine. Transgenic plants, their use. Transgenic animals as disease models and bioreactors. Environmental safety issues. The concept of cloning. Natural and artificial clones. History of cloning of organisms. Biological and ethical problems of cloning. Therapeutic cloning and its prospects in medicine.	Зн-8, Ум-4, К-2, К-3, К-4, AB-1, AB-2	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-1	Proteins, their role in providing of biological specificity. The concept of proteomics. Prion diseases.	The role of proteins in providing of biological specificity. Formation of a polypeptide chain. The structure of protein molecules. Classification of proteins according to biological functions. Carrier proteins, signaling, protective, structural, receptor, regulatory, enzymes. The concept of proteomics and prion diseases.	Зн-1, К-1, К-4, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-2	Mobile genetic elements. Molecular mechanisms of general genetic recombination.	Mobile genetic elements of the human genome (MGE): transposons, retrotransposons. Structure, distribution and functional role. Chromosomal and gene localization of MGE. The role of MGE in genome function, participation in recombination processes, regulation of gene activity and in the formation of new genes.	Зн-2, К-1, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-3	Nucleic acid research methods. Methods of DNA diagnostics. Molecular genetic research methods in forensic medicine.	Methods of DNA isolation from plant and animal tissues. Characteristics of enzymes used for genetic engineering research. Indications for DNA diagnostics. Direct and indirect methods. DNA chips. Genetic identification of a person in forensic examination.	Зн-8, К-2, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-4	Modern methods of human	Human karyotype. Obtaining samples of mitotic chromosomes, their differential staining. Molecular	Зн-4, Зн-8, K-2,	Assoc. Prof. Paryzhak S.Ya.,

	1		16.2	A D C
	karyotype study.	cytogenetic methods: FISH-method, comparative genome hybridization,	K-3, AB-1	Assoc.Prof. Onufrovych
		spectroscopic analysis of		O.K.
		chromosomes.		
CPC-5	Molecular mechanisms of cell aging.	Telomeric regions of chromosomes, their functions. Replication of telomeric regions of DNA. Telomerase, its activity in germ and stem cells. Participation of telomerases in the processes of cell aging and cancer therapy.	Зн-7, К-2, К-3, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-6	Molecular mechanisms of intercellular signaling and transmembrane transport	To consider the molecular organization and functions of biological membranes; surface receptors of cell membranes. To draw students' attention to the mechanisms of transmembrane signaling. To consider the types of substances transport.	Зн-7, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-7	Extranuclear heredity. Mitochondrial genome.	Extranuclear heredity: DNA of mitochondria and plastids. Mitochondrial genome, structure pecularities. Mitochondrial diseases. Using mtDNA analysis to study maternal lineage, human evolution, population migration, human identification.	Зн-4, К-2, К-3, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-8	Apoptosis: molecular mechanisms. Ways to realize the apoptosis program.	Apoptosis as a physiological process of cellular suicide. Morphological manifestations of apoptosis. Molecular mechanisms of apoptosis. Ways to realise the apoptosis program: the role of physiological inducers of mitochondrial proteins, endoplasmic reticulum, granzyme B cytotoxic T-lymphocytes, RGD-peptides. Regulation of apoptosis by external factors and autonomous mechanisms.	3н-7, К-1, К-3, К-4, AB-1	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-9	Mutagenic factors. Methods for substances mutagenic activity determination.	Mutagenic factors, their classification. Spontaneous and induced mutations. Causes of spontaneous mutations. Chemical mutagens. Methods for determining the genotoxicity of substances: analysis of gene mutations, analysis of chromosomal and genome mutations, analysis of the DNA effect. Antimutagenesis.	3н-5, 3н-8, К-3, AB-1, AB-2	Assoc. Prof. Paryzhak S.Ya., Assoc.Prof. Onufrovych O.K.
CPC-10	Genetic mechanisms of carcinogenesis.	Carcinogenic factors, their classification. Carcinogens of direct and indirect action. Characteristics	Зн-5, К-3, AB-1,	Assoc. Prof. Paryzhak S.Ya.,

				1	
		of genes involved in carcinogenesis:	AB-2	Assoc.Prof.	
		viral oncogenes, protooncogenes,		Onufrovych	
		tumor suppressor genes, mutator		O.K.	
		genes.			
CPC-11	Gene therapy.	Principles of gene therapy. Ex vivo	Зн-5,	Assoc. Prof.	
	Viral and non-	and in vivo gene therapy. Viral and	Зн-8,	Paryzhak	
	viral vectors in	non-viral vectors in gene therapy.	K-3,	S.Ya.,	
	gene therapy.	Prospects and limitations of gene	AB-1,	Assoc.Prof.	
	Gene vaccines.	therapy. DNA vaccines: method of	AB-2	Onufrovych	
		production; advantages and		O.K.	
		limitations.			
CPC-12	Transgenic	Basic methods and principles of	Зн-5,	Assoc. Prof.	
	organisms.	construction of transgenic	Зн-8,	Paryzhak	
	Recombinant	organisms.	K-3,	S.Ya.,	
	drugs.	Methods used to produce transgenic	AB-1,	Assoc.Prof.	
		bacteria.	AB-2	Onufrovych	
		Application of transgenic organisms		O.K.	
		in the national economy and			
		medicine.			
	System of classes organization				

- according to information sources: verbal and auditory perception methods of learning information (lecture, conversation, explanation, discussion); methods of presenting information and visual methods (illustration, demonstration of slides, tables, figures, review of literature; visual sources of information); methods of practical application of the information (practical assignment, practical tasks solving, mastering of practical skills).
- according to individual work: by means of problems, partial-searching, research (situational tasks solving, preparing scientific reports)

Interactive methods

- -problem-oriental method
- -method of individual educational-research and practical tasks
- method of competing groups
- method of training technologies
- «business game» method
- «brainstorming method»

8. Verification of results

Current control

Scoring system

Students are being tested and scored at each and every single class.

Criteria of evaluation:

Learning	Code of	The method of learning outcomes	Criteria of
outcome	classes	verification	evaluation
code	type		
		Methods of control	
		Types of educational activities of	Excellent ("5") –
		students are:	the student perfectly
		a) lectures	mastered the theoretical
		b) practical classes	material of the topic,
		c) individual work of student (ISW)	demonstrates deep and
			comprehensive
			knowledge of the topic,

		Thematic plans of lectures, practical	the main concepts of
		classes, ISW ensure the implementation	scientific sources and
		in the educational process of all topics	recommended literature,
		according to the program.	thinks logically and
Зн-1,	Π -1, Π -2,		answers thoroughly,
Зн-2,	$ \Pi$ -3, Π -4,	The lecture course consists of 6	freely uses the acquired
3н-3,	π 3, 37 7, π -5, π -6	lectures. The topics of the lecture course	theoretical knowledge in
Ум-1,	31 3, 31 0	reveal the problematic issues of the	analyzing of practical
Ум-2,		relevant chapters of Genetics. During	material, expresses his
Ум-2, Ум-3,		lectures, students develop theoretical	attitude to certain
K-1,		<u> </u>	problems, demonstrates
		basic knowledge, provides a	1 =
K-2,		motivational component and a general-	high level of practical
K-3,		indicative stage of mastering scientific	skills acquisition.
AB-1,		knowledge during individual work. The	
AB-2		lecture course makes maximum use of	Good ("4") – the student
		various didactic tools - multimedia	has well mastered the
		presentations, educational films, slides.	theoretical material of
			the lesson, knows the
Зн-1, Зн-2,	П-1, П-2,	Practical classes aim at control of	basic aspects of primary
Зн-3, Зн-4,	Π -3, Π -4,	theory, the formation of practical skills	sources and
Зн-5, Зн-6,	Π -5, Π -6,	and ability to analyze and apply their	recommended literature;
Зн-7, Зн-8,	Π -7, Π -8,	knowledge to solve practical problems.	possess practical skills,
Ум-1, Ум-2,	Π-9		expresses his views on
<i>Ум-3, Ум-4,</i>		Each lesson begins with a test to assess	certain issues, but
<i>Ум-5</i> ,		the initial level of knowledge and	assumes certain
K-1, K-2,		determine degree of readiness of	inaccuracies and errors in
K-3, K-4,		students for classes.	the logic of the
AB-1,		The teacher determines the purpose of	presentation of
AB-2		the lesson and creates a positive	theoretical content or in
		cognitive motivation; answers questions	the implementation of
		from students that arose during the ISW	practical skills.
		on the topic of the lesson.	
		•	Outstanding ("3") – the
		The main stage of the lesson is to	student has mainly
		perform practical work. Students	mastered the theoretical
		consider microslides and	knowledge of the subject,
		macropreparations, solve typical	is guided by primary
		situational problems, problems in	sources and
		molecular biology, genetics and medical	recommended literature,
		genetics, make an album.	but answers
		8	unconvincingly, confuses
		At the final stage of the lesson in order	concepts, additional
		to assess the student's mastery of the	questions cause the
		topic he is asked to answer the	student uncertainty or
		situational tasks.	lack of stable knowledge;
		CANADAMA CALON	answering questions of
		The teacher summarizes the lesson,	apractical nature, reveals
		gives students tasks for individual	inaccuracies in
		work, points out the main issues of the	knowledge, is unable to
		next topic and offers a list of	assess facts and
		recommended reading.	phenomena, relate them
		recommended reading.	to future activities,
		The duration of the practical lesson is 2	makes mistakes in the
		academic hours	makes mistakes iii tile

academic hours

	implementation of
	practical skills.
	Poor ("2") – the student
	has not mastered the
	study material of the
	topic, does not know the
	scientific facts,
	definitions, almost does
	not navigate in the
	original sources and
	recommended literature,
	there is no scientific
	thinking, practical skills
	are not formed.

Current educational activity

Current control is performed during the studying classes and is aimed at checking the mastering by students the learning material.

The forms of current control are:

- a) tests with a choice of one correct answer (multiple choice questions), the definition of the correct sequence of actions, definition of correspondency, the definition of specific areas in a picture or diagram («recognition»). Control can be performed using the Misa distance learning platform.
- b) individual oral examination, interview;
- c) solving of typical situational problems.

During the estimation of mastering of each topic for current educational activity student is graded in 4-point (traditional) scale according with the approved assessment criteria for the appropriate discipline. This takes into account all types of work, provided by the program of the discipline. The traditional scores from discipline are converted to the points.

Individual work of students is estimated during current control topics at the proper lesson and is a part of the final grade of student.

Final control				
General evaluation system	Is performed after the discipline completion in the form scale	of a credit on a 200-point		
Grading scales	traditional 4-point scale, multi-point (200-point) scale, ECTS rating scale			
Requiremen ts for final control access	The student attended all practical classes and received at current performance	least 72 points for		
Type of final control	Credit	Criteria for crediting «pass» or «fail» (Credit/No Credit)		

Maximum quantity of points, which student can collect for the current educational activity for admission to the credit (differentiated credit) makes 200 points.

Minimum quantity of points, which student can collect for the current educational activity for admission to the credit (differentiated credit) makes 120 points.

The calculation of the number of points is made on the basis of the collected student's marks on the traditional scale during the discipline study, by calculating the arithmetic mean (AM or average), rounded to two decimal places. The obtained value is converted into points according to the scoring scale as follows:

$$x = \frac{\text{CA} \times 200}{5}$$

The assessment of the discipline, the form of final control of which is credit, is based on the results of the assessment of current educational activities and is marked on a two-point scale: "pass" or "fail". To pass the discipline, the student must collect for the current educational activity not less than 60% of the maximum amount of points (for a 200-point scale - not less than 120 points). Scores and grades ("pass" or "fail") the teacher puts in the examination sheet and in the student's record book (except for a failing grade). The scores from discipline are converted to the ECTS scale. Grade F (failing grade). Grade F (unsatisfactory with obligate repeat of the course) is awarded to students who have attended all classes in the discipline, but did not collect the minimum number of points for the current academic activity. Such students receive a grade "fail" and are not allowed to take the exam session.

The scores from discipline are converted to the ECTS scale and to the 4-point scale independently.

"A", "B", "C", "D", "E" ranking is made for students studying at one of the specialty and who have successfully completed study course.

Discipline points for students who have successfully completed the program are converted into traditional 4-point scale by absolute criteria, which are listed in the following table:

Points from discipline	Estimation on 4-point scale
From 170 to 200 points	5
From 140 to 169 points	4
From 139 points to minimal quantity of points, which student must collect	3
Less than minimal quantity of points, which student must collect	2

Estimation of ECTS and traditional scale is not converted because the ECTS scale and 4-point scale are independent.

Objective evaluation of educational activities of students is tested by statistical methods (the correlation coefficient between ECTS score and score in a national scale).

9. Course policy

The policy of the course is determined by the system of requirements for the student in the study of the discipline "Modern problems of molecular biology" and is based on the principles of academic integrity. Students are explained the value of acquiring new knowledge, the need for independent performance of all types of work and tasks provided by the work program of this discipline. Lack of references to used sources, fabrication of sources, writing off, interference in the work of other students are examples of possible academic dishonesty. Detection of signs of academic dishonesty in the student's work is the basis for its non-enrollment by the teacher,

regardless of the extent of plagiarism or deception. Literature resources may be provided by the teacher exclusively for educational purposes without the right to transfer to third parties. Students are encouraged to use other literature resources which are not provided by the recommended list.

10. Recommended literature

Basic:

- 1. Paryzhak S.Ya., Vorobets Z.D. Medical Biology. Textbook Lviv: Qvart, 2020. 426 p.
- 2. Bazhora Y.I., Bulyk R.Ye., Chesnokova M.M., Shevelenkova A.V., Smetyuk O.O., Lomakina Yu.V. Medical Biology: textbook. Vinnytsia: Nova Knyha, 2018. 448 p.: il.
- 3. Paryzhak S.Ya., Odnorih L.O. Medical biology and parasitology. Manual for the first-year students of the English department, the faculties of medicine and dentistry. Lviv: Danylo Halytsky Lviv National Medical University, 2021. 306 p.
- 4. Step 1. Lecture notes 2018 Biochemistry and Medical genetics. New York. Kaplan, Inc. 2018 403 c.

Additional:

- 1. Kratz R.F. Molecular & Cell Biology For Dummies, 2nd Edition. New Jersey: John Wiley & Sons Inc, 2020, 400 p.
- 2. Kaplan Medical's USMLE STEP 1. Biochemistry and Medical Genetics. Lecture notes. 2018. 432 p.
- 3. Pap E., Falus A., László V., Oberfrank F., Szalai C., Tóth S. Medical Genetics and Genomics. Edited by Typotex Kiadó. Budapest University of Technology and Economics, 2016. 206 p.
- 4. Rautenstrauss B.W., Liehr T. FISH technology. Berlin: Springer, 2012, 494 p.

Informational resources:

- 1. Testing center database of license tests Krok 1 https://testcentr.org.ua/
- 2. OMIM (Online Mendelian Inheritance in Man) An Online Catalog of Human Genes and Genetic Disorders http://omim.org/
- 3. NCBI databases https://www.ncbi.nlm.nih.gov
- 4. Encyclopedia of DNA elements http://genome.ucse.edu/ENCODE/

11. Equipment, hardware and software resources of the discipline/ course

Methodological support

- Working program from the discipline;
- Lecture thesis from the discipline;
- Methodical recommendations for teachers;
- Methodical recommendations for practical classes for students;
- Distance learning platform MISA;
- Methodical manual for students independent work;
- Tests and control tasks for practical classes;
- Questions and tasks for final control.

12. Additional information

Responsible for the educational process at the department – Associate Professor Oksana Pershyn. There is a scientific students' association at the department. Meetings take place in the auditorium N_2 1.

Practical classes are held in the classrooms of the department at the address: 3a Shimzeriv street,.Theoretical building, 2nd floor.

e-mail: kaf medicalbiology@meduniv.lviv.ua

Compilers of Syllabus,	
Ph.D., Associate Professor	 Solomiya PARYZHAK

Ph.D., Associate Professor		Lydmyla SERHIYENKO
Head of the Department,		
Doctor of Biological Sciences, Professor		Zinoviy VOROBETS