Danylo Halytsky Lviv National Medical University

Department of Pharmaceutical, Organic and Bioorganic chemistry

SYLLABUS FOR "ORGANIC CHEMISTRY"

Second (master's) educational level Field: 22 " Healthcare " Specialty 226 "Pharmacy, industrial pharmacy"

	1. General information
Faculty	Pharmaceutical
	22 Healthcare,
Duogugu	226 Pharmacy, industrial pharmacy
Program	the second (master's) level,
	full-time
Academic year	2022/2023
Subject	Organic Chemistry, OK 14, Kaf_pharmchemistry@meduniv.lviv.ua
Department	Department Pharmaceutical, Organic and Bioorganic chemistry
	Pekarska 69, Lviv,
	Tel. +38(032)275-59-66, 275-59-77, 278-64-34
	Kaf_pharmchemistry@meduniv.lviv.ua
Head of Department	Lesyk Roman, Doctor of Science, Professor
	roman.lesyk@gmail.com
Year of study	Second
Semester	Third and fourth
Type of course / module	Compulsory
Professors	Nataliya Zelisko, PhD, Associate Professor, NataljaZelisko@gmail.com
	Danylo Kaminskyy, PhD, Associate Professor,
	<u>dankaminskyy@gmail.com</u>
	Ivanna Subtelna, PhD, Associate Professor, subtelna@gmail.com
Erasmus yes/no	No
The person responsible	Ivanna Subtelna, PhD, Associate Professor, subtelna@gmail.com
for the syllabus	

2	
Number of credits	8
ECTS	
Number of hours	240 (Lectures – 20 hours, Practical classes – 100 hours, Out of class
	work – 120 hours)
Language of study	English
Information about consultations	On schedule
Address, telephone and regulations of the clinical base, office (if necessary)	-

2. Short annotation to the course

The discipline "Organic Chemistry" is devoted to the systematic study of the chemical behavior of organic compounds in the relation on their structure and the formation of creative chemical thinking on this basis. It is necessary for the successful understanding of specialized disciplines, as well as for practical activity.

The main goal of Organic Chemistry as a fundamental discipline is to provide a scientific approach to solving such problems as pharmaceutical analysis, phytochemical and chemico-toxicological analysis, as well as the synthesis, evaluation of quality and technology of medical preparations and their storage conditions.

Training of specialists who need knowledge of Organic Chemistry requires not only theoretical base but also the versatile practical skills for chemical experiments.

The tasks of Organic Chemistry are to determine the structure of organic molecules both natural and synthetic; studying and understanding of the chemical transformations of organic molecules based on the nature of functional groups; detection of relationships between molecular and electronic structure of compounds and their physiological and pharmacological effects, revealing the patterns of the chemical transformations; studying the aspects of obtaining, purification, and analysis of organic compounds.

3. The purpose and objectives of the course

1. Objectives of teaching of the "Organic Chemistry" course are:

- mastering of regularity of chemical properties of organic compounds based on their structure; understanding of biochemical processes that occur in biological systems;

- be familiar with basic methods of organic compounds synthesis as the basis for new biologically active substances creation;

- gaining practical skills that will be helpful to learn the standardization techniques and grug quality control;

- disclosure of organic chemistry practical aspects, methods and ways of usage of its achievements in the pharmaceutical practice.

2. The purpose of the "Organic Chemistry" course are:

- to teach students the general principles of evaluation of the chemical properties of organic compounds, underlying the synthesis and analysis of organic substances;

- to reveal of organic chemistry practical aspects, the ways and methods of use its achievements in the pharmaceutical practice.

3. Competences and learning outcomes, the formation of which provides the study of the discipline.

3K – General competencies, ΦK – Special responsibility, ΠPH – Program learning outcomes *General competencies:*

3K 2. The ability to apply knowledge in practical situations.

3K 3. The striving to save the environment.

3K 4. The ability to abstract thinking, analysis and synthesis; the ability to study and to be trained up-

3

to date

3K 6. Knowledge and understanding of the subject area and comprehension of the profession. 3K.7 Ability to adapt and act in a new situation.

3K 10. Ability to choose communication strategies, ability to work in a team and with experts from other fields of knowledge / types of economic activity.

3K 11. Ability to assess and ensure the quality of performed work.

3K 12. Ability to perform research at the appropriate level.

3K 14. Ability to preserve and increase moral, cultural, scientific values and achievements of society based on understanding the history and patterns of development of the subject area, its place in the general system of knowledge about nature and society and in the development of society, techniques and technologies. active recreation and a healthy lifestyle.

Special responsibility:

 Φ K 2. Ability to provide advice on prescription and over-the-counter drugs and other pharmaceutical products; pharmaceutical care during the selection and sale of over-the-counter drugs by assessing the risk / benefit, compatibility, indications and contraindications based on data on the health of a particular patient, taking into account biopharmaceutical, pharmacokinetic, pharmacodynamic and physicochemical characteristics of the drug and other pharmaceutical products.

 ΦK 4. Ability to ensure rational use, obtain the necessary information from identified sources to ensure conditions for quality and safe pharmaceutical care of prescription and over-the-counter drugs and other pharmaceutical products in accordance with physicochemical, pharmacological characteristics, biochemical, pathophysiological features of a particular disease and its pharmacotherapeutic regimen.

 Φ K 5 Ability to monitor the effectiveness and safety of the use of drugs by the population according to the data on their clinical and pharmaceutical characteristics, as well as taking into account subjective signs and objective clinical, laboratory and instrumental criteria for examination of the patient.

 Φ K 6. Ability to identify drugs, xenobiotics, toxins and their metabolites in body fluids and tissues, to conduct chemical and toxicological studies to diagnose acute poisoning, drug and alcohol intoxication.

 Φ K 7. Ability to ensure proper storage of medicines and other products of the pharmacy range in accordance with their physicochemical properties and the rules of Good Storage Practice (GSP) in health care facilities.

 Φ K 15. Ability to organize and participate in the production of medicines in the context of pharmaceutical companies, including the selection and justification of the technological process, equipment in accordance with the requirements of Good Manufacturing Practice (GMP) with the appropriate development and design of the necessary documentation. Determine the stability of drugs.

 Φ K 19. Ability to organize and control the quality of medicines in accordance with the requirements of the current State Pharmacopoeia of Ukraine and good practices in pharmacy, determine methods of sampling for control of medicines and standardize them in accordance with current requirements, prevent the spread of counterfeit medicines.

 Φ K 20. Ability to develop methods for quality control of medicines, including active pharmaceutical ingredients, medicinal plant raw materials and excipients using physical, chemical, physicochemical, biological, microbiological, pharmacotechnological and pharmacoorganoleptic control methods.

Program learning outcomes:

ΠPH 1 carry out professional activities in social interaction based on humanistic and ethical principles; identify future professional activities as socially significant for human health.

ΠΡΗ 2 to apply knowledge of general and professional disciplines in professional activities;

IIPH 4 to use the results of independent search, analysis and synthesis of information from various sources for solving typical tasks of professional activity;

IIPH 10 Adhere to the norms of communication in professional interaction with colleagues, management, consumers, work effectively in a team.

IIPH 12 to use methods of performance indicators evaluation; to reveal reserves for improving of labor productivity.

ПРН 14 to determine the advantages and disadvantages of drugs of different pharmacological groups,

taking into account their chemical, physicochemical, biopharmaceutical, pharmacokinetic and pharmacodynamic features. To recommend to consumers over-the-counter medicines and other products of the pharmacy range with the provision of counseling and pharmaceutical care. IIPH 16. to determine factors influencing the processes of absorption, distribution, deposition, metabolism and excretion of the drug and due to the condition, features of the human body and physicochemical properties of drugs. IIPH 17 to use data from clinical, laboratory and instrumental studies to monitor the effectiveness and safety of drugs. IIPH 30 to ensure quality control of medicines and document its results. Manage quality risks at all stages of the life cycle of medicines.

IIPH 32 to determine the main organoleptic, physical, chemical, physicochemical and pharmacotechnological indicators of medicines, to substantiate and choose methods of their standardization, to carry out statistical processing of results in accordance with the requirements of the current State Pharmacopoeia of Ukraine.

4. Pre-details of the course								
1. Medical and biological physics (4,5 credits).								
2. General and inorganic chemistry (9 credits).								
3. Higher mathematics and statistics	3. Higher mathematics and statistics (4 credits).							
	5. Program learning outcomes							
	List of learning outcomes	1						
Learning outcome code	The content of the learning	Reference to the code of the						
	outcome	competence matrix						
Зн – Knowledges								
y_{M} – skills		ПРН – program learning						
AB – independence and		outcomes						
responsibility								
K – competence								
Зн-1	basic principles of classification,	IIPH 2, IIPH 14						
	nomenclature, structural and							
	spatial isomerism of bioorganic							
2 2	compounds							
3H-2	types of chemical bonds,	11PH 2, 11PH 14, 11PH 16,						
	officiate systems, electronic							
	biographic compounds as a basic							
	basis of their reactivity							
2.1.2	principles of classification of							
SH-5	principles of classification of	11FH 2, 11FH 14						
	direction method of hond							
	disconnection and mechanism of							
	their course							
34-4	structure nomenclature	ПРН 2 ПРН 12 ПРН 14						
511-4	isomerism chemical properties	ПРН 16 ПРН 17						
	and biological role of	ПРН 30 ПРН 32						
	hydrocarbons halogen- oxygen-	1111150, 1111152						
	sulfuro- and nitrogen-containing							
	derivatives of hydrocarbons							
	heterofunctional compounds.							
	heterocyclic compounds.							
	biopolymers and bioregulators							
Зн-5	names and purpose of chemical	ПРН 32						
	and laboratory equipment							
Ум-1	use chemical and reference	ПРН 4, ПРН 12						
	literature, work with tabular and							
	graphic data							

4

5		
Ум-2	to make separate laboratory installations	ПРН 30, ПРН 32
Ум-3	purify liquid and solid organic compounds, establish their purity	ПРН 30, ПРН 32
Ум-4	determine the physical constants of organic compounds	ПРН 17, ПРН 30, ПРН 32
Ум-5	to conduct elemental analysis	ПРН 14, ПРН 17, ПРН 30, ПРН 32
Ум-6	use laboratory methods of obtaining individual organic compounds	ПРН 30, ПРН 32
Ум-7	to carry out qualitative reactions to multiple bonds and the main functional groups;	ПРН 30, ПРН 32
Ум-8	independently carry out the synthesis and analysis of the proposed organic compound	ПРН 30, ПРН 32
К-1	have a scientific worldview and creative thinking	ПРН 2, ПРН 4,ПРН 12
К-2	have information management skills	ПРН 2, ПРН 4,ПРН 12
AB-1	have the ability to critically evaluate the results of their own research	ПРН 1, ПРН 4,ПРН 10, ПРН 12
AB-2	be able to improve their own learning	ПРН 1, ПРН 4,ПРН 10, ПРН 12
AB-3	be able to learn new areas through self-study, using the acquired knowledge of organic chemistry	ПРН 1, ПРН 4,ПРН 10, ПРН 12

6. Format and scope of the course					
Format of the cours	se	Full-time course			
Type of lessons		Number of hours		Number of groups	
lectures		20			Z 1
practical		100			
seminars		-			-
out of class work		120			
	7. T	opics and content of the	course		
Class type code	Topic	Content of training	Code	of result of	Professor
	-		t	raining	
	Л – lecture, Г	- practical class, CPC -	out of cl	ass work	
Л-1	Introduction into	The subject of		Зн-1	Zelisko N., PhD,
	organic chemistry	bioorganic		Зн-2	Associate
	Chemical bond an	d chemistry.		Ум-1	Professor,
	atoms interaction	in Chemical bond.		К-1	Subtelna I, PhD,
	the organic	Conjugate systems.		К-2	Associate Professor
	compounds.	Interaction of			
		atoms: induction			
		and mesomeric			
		electronic effects.			
Л-2	Methods of t	he The main stages of		Зн-1	Zelisko N., PhD,
	identification of t	he determining the		Зн-3	Associate
	organic compour	nd structure of organic		Зн-5	Professor,

(5				
	П 2	structures. Spatial (stereo) structure of the organic compounds. Classification of the organic reactions and reagents.	compounds. Features of elemental analysis of organic compounds. Spectral methods of organic compounds research. IR, UV, PMR and mass spectra. Spatial structure of organic compounds. Stereoisomerism. Classification of chemical reactions. Intermediate particles of chemical reactions. Mechanisms of chemical reactions.	Ум-2 Ум-3 Ум-4 Ум-5 Ум-8	Subtelna I, PhD, Associate Professor
	Л-3	Saturated hydrocarbons. Unsaturated hydrocarbons. Aromatic compounds.	$\begin{array}{c} Structure, \\ nomenclature, \\ isomerism, \\ obtaining methods \\ and chemical \\ properties of \\ alkanes and \\ cycloalkanes. S_R \\ reaction \\ mechanism. \\ Structure, \\ nomenclature, \\ isomerism, \\ obtaining methods \\ and chemical \\ properties of \\ alkenes, alkynes \\ and alkadienes. A_E \\ reaction \\ mechanism. \\ Structure, \\ nomenclature, \\ isomerism, \\ obtaining methods \\ and chemical \\ properties of \\ alkenes, alkynes \\ and alkadienes. A_E \\ reaction \\ mechanism. \\ Structure, \\ nomenclature, \\ isomerism, \\ extraction methods \\ and chemical \\ properties of \\ mononuclear and \\ multinuclear \\ arenes. S_E reaction \\ mechanism. \\ \end{array}$	Зн-1 Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna, PhD, Associate Professor
	Л-4	Halogen-	Structure,	Зн-4	Zelisko N., PhD,
		derivatives of the	nomenclature,	Ум-1 Vм-2	Associate
		nyurocuroons.	150110115111,	J 1V1-2	110105501,

7				
	Mechanisms of the nucleophilic substitution and elimination. Hydroxy- derivatives of hydrocarbons and thio-analogs (alcohols, thioles, phenols)	synthesis methods, chemical properties and practical significance of halogenated hydrocarbons. Reaction mechanisms S_N2 , S_N1 , E2, E1. Structure, nomenclature, isomerism, synthesis methods, chemical properties and practical significance of monohydric and polyhydric alcohols and phenols, naphthols, thioalcohols, thiophenols. Reaction mechanisms S_N2 , S_N1 , E2, E1.	Ум-7	Subtelna I, PhD, Associate Professor
Л-5	Nitrogen- containing organic compounds (amines, nitro-, diazo-, azocompounds, azodyes). Acidic and basic properties of organic compounds.	Structure, nomenclature, isomerism, synthesis methods, chemical properties and practical significance of amines, nitro compounds, diazonium salts, azo dyes. Theory of colour. Acidity and basicity of organic compounds. Bransted and Lewis theories.	Зн-1 Зн-2 Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
Л-6	Aldehydes and ketones. Carboxylic acids and their functional derivatives. Carbonic acid derivatives. Sulfonic acids.	Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of aldehydes and ketones. The reaction mechanism of A_N . Structure, nomenclature, isomerism, synthesis methods.	Зн-1 Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

8				
		chemical properties and biological role of carboxylic acids, their functional derivatives, carboxylic acid derivatives, sulfonic acids. The reaction mechanism of Sy		
Л-7	Heterofunctional compounds.	Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of heterofunctional compounds (halogen-, hydroxy-, hydroxy acids, amino alcohols, aminophenols, amino acids).	3н-1 3н-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
Л-8	Five-membered heterocycles with one or two hetero atoms. Six-membered heterocycles with one or two hetero atoms. Seven-membered and condensed heterocycles. Alkaloids. The nucleic acid	Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of five-membered heterocycles with one and two heteroatoms. Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of six-membered heterocycles with one and two heteroatoms. Structure, nomenclature, isomerism, Synthesis methods, chemical properties and biological role of seven-membered and condensed heterocycles, alkaloids, nucleic acids.	Зн-1 Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

9				
9 Л-9 Л-10	Carbohydrates Proteinogenic amino acids. Peptides. Proteins. Lipids.	Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of carbohydrates (mono-, di- and polysaccharides). Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of proteinogenic amino acids.	Зн-1 Зн-4 Ум-6 Ум-7 Зн-1 Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П 1 (Classification	properties of peptides, proteins, saponifiable and non-saponifiable lipids.	21	Zeliska N. DhD
11-1 (практичне заняття 1)	Classification, nomenclature, and structural isomerism of the organic compounds.	The main statement of the theory of chemical structure of organic compounds and its significance for the development of organic chemistry. Fundamental concepts of organic chemistry: homology, hydrocarbon radical, substituent, functional group, poly- and heterofunctionality, isomerism. Classification of organic compounds. The main classification features of organic compounds - structure of the carbon skeleton and the nature of the functional group. Elements of structure that determine the reactivity of	Зн-1 Ум-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

10				
		compounds.		
		Genetic		
		relationship		
		between classes of		
		organic		
		compounds.		
		Nomenclature		
		systems in organic		
		chemistry - trivial,		
		rational, IUPAC		
		system.		
		Types of formulas		
		in organic		
		chemistry:		
		molocular		
		structural		
		Abbreviated and		
		simplified		
		structural formulas		
		Structural		
		isomerism: carbon		
		skeleton		
		isomerism, position		
		isomerism,		
		functional group		
		isomerism		
		150110115111.		
П-2	Types of the	Atomic and	Зн-2	Zelisko N., PhD,
П-2	Types of the chemical bonds	Atomic and molecular orbitals.	Зн-2 Зн-5	Zelisko N., PhD, Associate
П-2	Types of the chemical bonds and atoms	Atomic and molecular orbitals. Types of	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor,
П-2	Types of the chemical bonds and atoms interactions in the	Atomic and molecular orbitals. Types of hybridization: sp3,	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD,
П-2	Types of the chemical bonds and atoms interactions in the molecules of the	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, accordination	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, seminolar) The	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concent of	3н-2 3н-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids.	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds.	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy,	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity,	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity, polarization.Types	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity, polarization.Types of chemical bond	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity, polarization.Types of chemical bond broking	Зн-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-2	Types of the chemical bonds and atoms interactions in the molecules of the organic compounds. Laboratory equipments.	Atomic and molecular orbitals. Types of hybridization: sp3, sp2, sp.Types of chemical bonds (covalent, ionic, coordination, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity, polarization.Types of chemical bond broking (homolytic,	3н-2 Зн-5	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

11				
		intermediate		
		particles		
		(carbocations.		
		carbanions free		
		radicals) their		
		electronic structure		
		Types of reagents		
		(alastrophiles		
		(electropilles,		
		nucleophnes, nee		
		radicals).		
		Conjugation and its		
		types $(\pi, \pi$ - and p,		
		π -conjugation).		
		Influence of		
		electron		
		delocalization on		
		increasing the		
		stability of		
		conjugate systems.		
		Conjugation		
		energy.		
		Conjugated		
		systems with open		
		and closed chain.		
		Aromaticity and its		
		criteria.		
		Interaction of		
		atoms: induction		
		and mesomeric		
		electronic effects		
		Electron-donor and		
		electron-accentor		
		substituents their		
		influence on the		
		reactivity of		
		malagular		
		The main trmes of		
		The main types of		
		laboratory glass.		
		Chemical utensiis		
		and equipment		
		used in organic		
		synthesis.		
11-3	Methods of the	I he most important	Зн-5	Zelisko N., PhD,
	purification of the	equipment used in	Ум-I	Associate
	organic	organic synthesis is	Ум-2	Professor, ,
	compounds.	for weighing,	Ум-3	Subtelna I, PhD,
	Determination of	measuring, heating,	Ум-4	Associate Professor
	the physic-	cooling and	К-2	
	ahomical	filtering.		
	chemical	Types of		
	constants of the	distillation (simple		
	organic	distillation,		
	compounds.	distillation with		
		dephlegmator,		
		steam distillation,		

12				
		vacuum		
		distillation) and		
		their use.		
		Extraction from		
		solid mixtures and		
		liquids Solvent		
		requirements for		
		extraction		
		Recrystallization		
		(utensils and		
		(utensiis and		
		couplicit, solvent		
		selection, use of		
		adsorbents, neating		
		of inquids,		
		nitration).		
		Drying of solids		
		and liquids.		
		Sublimation.		
		Column and thin-		
		layer		
		chromatography.		
		Establishing the		
		individuality of		
		organic		
		compounds. Rf.		
		Determination of		
		the heating		
		temperature.		
		Determination of		
		boiling point		
		Determination of		
		refractive index.		
		Determination of		
		density.		
П-4	Stereochemistry	Configurations and	Зн-1	Zelisko N., PhD.
	the biologically	conformations of		Associate
	activo	molecules.		Professor.
		Conformations of		Subtelna I PhD
	compounds.	open chains (ethane		Associate Professor
		type: n-butane 1 2-		100001000 110100001
		dibromoethane		
		ethylene glycol)		
		Conformations of		
		cyclohexane Axial		
		and equatorial		
		honds		
		Methods of		
		representation the		
		spatial structure of		
		spanar structure of		
		November's		
		inewman's		
		projections,		
		Fisher's tormulas,		
		stereochemical		
		formulas.		

13				
		Stereoisomerism:		
		geometric (cis,		
		trance) and mirror.		
		Chirality of		
		molecules. Optical		
		isomerism.		
		Enantiomers.		
		Diastereomerism.		
		Relative		
		configuration.		
		Glyceraldehyde is a		
		configuration		
		standard.D- and L-		
		stereochemical		
		series of chiral		
		molecules.		
		Optical activity and		
		racemates. Concept		
		about ways to		
		separate optical		
		antipodes.		
		Relationship of		
		spatial structure		
		with biological		
		activity		
П-5	Determination of	The main stages of	3 _H -3	Zelisko N PhD
110	the organic	establishing the	3н-4	Associate
	compounds	structure of organic	Ум-1	Professor.
	structures	compounds.	Ум-2	Subtelna I, PhD,
	Classification of	Features of	Ум-5	Associate Professor
	the encomic	elemental analysis	Ум-7	
	the organic	of organic	К-2	
	reactions and	compounds.		
	reagents.	Discovery of		
		Carbon and		
		Hydrogen in		
		Organic		
		Compounds.		
		Discovery of		
		Nitrogen and		
		Sultur in organic		
		compounds.		
		balagena in anomia		
		naiogens in organic		
		The concent of		
		chemical elemental		
		analysis of organia		
		compounds		
		Methods for		
		determining the		
		molecular weight		
		of organic		
1	1	1 015millo		

14				
		Derivation of the		
		gross formula.		
		Derivation of		
		formulas of simple		
		organic compounds		
		(law of radicals).		
		The practical		
		significance of		
		qualitative and		
		quantitative		
		analysis of organic		
		compounds		
		Spectral methods		
		of research of		
		organic		
		compounds IR		
		UV PMR and		
		mass spectra		
		Characteristic		
		frequencies of the		
		most important		
		functional groups		
		(hydroxyl		
		arbonyl amine		
		groups)		
		Classification of		
		chamical reactions		
		by		
		direction Classifica		
		tion of chemical		
		reactions by the		
		method of		
		disconnection		
		Intermediate		
		narticles of		
		chamical reactions		
		are carbocations		
		carbanions and free		
		radicals their		
		alastropia structura		
		Electrophilic and		
		nucleophilic		
		reagents Reagent		
		and substrate		
		Mechanisms of		
		chemical reactions		
		The role of the		
		ante noie on the		
		catalyst in the		
		reactions		
ПА	Coturated	Nomonoloturo and	Drr 4	Zalisko N. DhD
11-0	Saturated	isometricm	SH-4 Vvc 6	Associate
	nydrocarbons	allyonas All1	У М-О	Associate
	(alkanes,	radicala Drimorra	V., 7	Subtelno I DhD
	cycloalkanes.	radicals. Primary,	УМ-/	Associate Professor
	Unsaturated	secondary and		Associate Professor

15				
	hydrocarbons	tertiary carbon		
	(alkenes, alkynes,	atoms.		
	alcadienes))	Industrial and		
		laboratory methods		
		of alkane synthesis.		
		Characterization of		
		chemical bonds in		
		alkane molecules.		
		Reactions of		
		radical substitution		
		of SR in saturated		
		hydrocarbons and		
		factors influencing		
		their course.		
		nroportion of		
		alkanes		
		(halogenation		
		sulfochlorination		
		nitration oxidation		
		cracking)		
		Classification.		
		isomerism,		
		nomenclature and		
		methods of		
		extraction of		
		cycloalkanes.		
		Geometric		
		isomerism of		
		cycloalkanes. Cls-		
		Characterization of		
		chemical bonds in		
		cycloalkane		
		molecules.		
		"Banana" bonds in		
		the cyclopropane		
		molecule.		
		Chemical		
		properties of		
		cycloalkanes		
		depending on the		
		size of the cycle.		
		hydrogenation 01		
		halogenation		
		hydrohalogenation		
		narrowing and		
		expansion of		
		cycles.		
		Industrial and		
		medical-biological		
		significance of		
		alkanes and		
1		cycloalkanes.		1

16				
		Nomenclature,		
		isomerism and		
		methods of		
		synthesis of		
		unsaturated		
		hydrocarbons		
		Electronic structure		
		of multiple bonds		
		Flectrophilic		
		addition reaction		
		A_{Γ} σ and π -		
		Complexes their		
		stability Factors		
		influencing the		
		course of the		
		electrophilic		
		addition reaction		
		Chemical		
		properties of		
		unsaturated		
		hydrocarbons		
		(hydrogenation		
		reactions		
		halogenation		
		hydrohalogenation		
		hydration		
		ovidation,		
		nolymerization)		
		Markovnikov's rule		
		and its modern		
		interpretation		
		The peculiarity of		
		the chemical		
		behaviour of		
		conjugated dienes		
		Diene synthesis		
		(Diels-Alder		
		reaction) CH-		
		Acidity of alkynes		
		Identification of		
		unsaturated		
		hydrocarbons		
		The industrial		
		biological and		
		practical		
		significance of		
		individual		
		representatives		
П-7	Mononuclear	Features of the	Зн-4	Zelisko N., PhD,
	aromatic	structure of	Ум-6	Associate
	compounds	benzene. General	Ум-7	Professor,
	Polynuclear	criteria of		Subtelna I, PhD,
	aromatic	aromaticity.		Associate Professor
	aromatic compounds First	Hückel's rule.		
	compounds. Final	Nomenclature and		

17		
test.	structural	
	isomerism of	
	mononuclear	
	arenas.	
	Synthesis methods.	
	Chemical	
	properties of	
	mononuclear	
	arenes	
	Electrophilic	
	substitution	
	reactions (SF)	
	Structure of π_{-} and	
	σ_{-} complexes	
	Reactions of	
	halogenation	
	nitration	
	sulfonation	
	alkylation	
	any atton,	
	Addition reactions	
	Ovidation reactions	
	of benzene and its	
	homologues	
	Influence of	
	electron-donor and	
	electron-acceptor	
	substituents on the	
	direction and rate	
	of electrophilic	
	substitution	
	reactions Orients	
	of the Land II kind	
	The orientation in	
	the S_r reaction in	
	disubstituted	
	henzene	
	Identification of	
	mononuclear	
	arenas.	
	Individual	
	representatives,	
	their properties and	
	uses.	
	Polynuclear arenas.	
	Classification,	
	electronic structure,	
	aromatic character.	
	Conjugation	
	energy.	
	Naphthalene,	
	synthesis methods.	
	Chemical	
	properties	
	(electrophilic	

18		
	substitution	
	reactions, addition,	
	oxidation).	
	Orientation rules in	
	the naphthalene	
	cycle Spatial	
	isomerism of	
	decalin Individual	
	representatives	
	Anthracene	
	nhenanthrene	
	Synthesis	
	Chemical	
	nonerties	
	(electrophilic	
	substitution	
	reactions addition	
	oxidation)	
	Hydrogenated	
	nhenonthrone as a	
	structural fragment	
	of morphine	
	alkaloids	
	steroids	
	Carcinogenic	
	nolynuclear	
	condensed arenes	
	Binhenyl	
	Synthesis methods	
	chemical	
	properties	
	Benzidine	
	Diphenylmethane.	
	Synthesis.	
	Chemical	
	properties.	
	Methylene group	
	activity. Sinestrol.	
	Triphenylmethane.	
	Extraction,	
	chemical	
	properties. CH-	
	acidity of the	
	methine group.	
	Structure of	
	triphenylmethyl	
	cation, anion and	
	radical. Dyes of the	
	triphenylmethane	
	series. Brilliant	
	green,	
	phenolphthalein.	
	Non-benzoid	
	aromatic systems:	
	cyclopentadienyl	

19				
		anion, ferrocene, cycloheptatrienyl cation (tropilium ion), azulene. The reason for their aromaticity.		
	Halogen- derivatives of hydrocarbons. Mechanisms of the nucleophilic substitution and elimination.Method s of halogenation.	Classification, nomenclature and isomerism of halogenated saturated, unsaturated and aromatic hydrocarbons. Methods of synthesis of mono-, di- and polyhalogenated hydrocarbons. Mechanisms of reactions of introduction of halogen into molecules of organic compounds (S_R, S_N, A_E, S_E). Reactivity of halogenated hydrocarbons. Characteristics of the carbon-halogen bond. Factors affecting the mobility of halogen atoms. Nucleophilic substitution reactions in haloalkanes and halogenarenes. Mechanisms of S_N1 and S_N2 reactions. Stereochemical aspects of nucleophilic substitution reactions. Cleavage reactions (elimination). The mechanism of E1 and E2 reactions. Zaitsev's rule. Factors influencing the course of competitive	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

20		
	reactions of	
	nucleophilic	
	substitution and	
	elimination.	
	Unsaturated	
	halogen derivatives	
	(addition	
	nolymerization	
	nucleonhilic	
	substitution and	
	elimination of vinvl	
	and allyl halides)	
	Deactivating and	
	activating effect of	
	halogen on the	
	course of	
	electrophilic	
	substitution	
	reactions (SE) in	
	halogenarenes	
	Interaction of alley	
	halidas with matals	
	(Grignard Wurtz	
	ond Wurtz Fittig	
	and wurtz-rining	
	Identification of	
	halogenated	
	hydrocarbons	
	Individual	
	representatives	
	their medical	
	hiological and	
	industrial	
	significance	
	Methods of	
	halogenation of	
	organic compounde	
	(halogenation	
	nathways and	
	halogenating	
	agents).	
	Identification of	
	halogenated	
	hydrocarbons.	
	Individual	
	representatives	
	their medical	
	biological and	
	industrial	
	significance.	
	Methods of	
	halogenation of	
	organic compounds	
	(halogenation	
	pathways and	

21				
		halogenating		
		agents).		
П-9	Monoalcohols, ethers. Methods of halogenation (continuation).	halogenating agents). Monohydroxy alcohols and ether: classification, nomenclature, and isomerism. Methods of preparations and properties. Peculiarity of the chemical behavior of saturated (primary, secondary, and tertiary) an unsaturated alcohols. Effect of the intermolecular association on physical properties and spectral characteristics of alcohols. Acid and basic characteristics of the organic compounds. Brønsted – Lowry theory of acids and bases; types of acids (OH- and CH-acids).	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
П-10	Polyalcohols, phenols, naphtols. Thioalcohols.	and bases. Factors determining acidity and basicity. Industrial, biological and medical use of the alcohols. Classification, nomenclature, isomerism, and chemical properties of the polyhydroxy alcohols, phenols, amino phenols, and naphtoles. Methods of	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
		preparation and chemical properties		

22				
		alcohols, phenols, amino phenols. Identification of the diols and triols. Electronic structure of the phenolic hydroxyl. Acidic and basic properties of the polyhydroxy alcohols, phenols, naphtoles and thiols. Electrophilic substitution reactions (S_E) of phenol. Identification reactions for the monohydroxy and polyhydroxy phenols and their oxidation by different oxidizers. Nomenclature and preparation of the thiols and thioethers. Derivatives of the polyhydroxy alcohols phenols, and thioethers as		
П-11	Amines. Acidic and basic properties of organic compounds. Nitro-compounds. The methods of nitration of the organic compounds.	drugs.Definition, classification, representatives, nomenclature and isomerism of amines.Comparative characteristics of the physical properties of amines and their salts.Methods of obtaining aliphatic and aromatic amines.Acid-base properties and their dependence on the electronic effects of substituents on the nitrogen atom in a	Зн-2 Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

23		
	number of amines.	
	Salt formation with	
	different acids and	
	inverse conversion	
	of salts into amine	
	bases	
	Amines as	
	nucleophilic	
	reagents	
	Alkylation and	
	acylation of	
	amines Formation	
	of Schiff's bases	
	Reactions of	
	nrimary secondary	
	and tertiary amines	
	of alignatic and	
	aromatic series	
	with nitric acid	
	Influence of omino	
	aroun on the	
	group on the	
	aramatia nucleus	
	Hologonation	
	malogenation,	
	sumonation and	
	aromatic amines	
	Definitions:	
	amination	
	deamination	
	diazotization	
	nitrosotion	
	Amino group	
	identification	
	reactions Isonitrile	
	test	
	Detection of amino	
	groups by IIV and	
	IR spectra	
	Acidic and basic	
	properties of	
	organic	
	compounds.	
	Theories of	
	Bransted and	
	Lewis. Types of	
	organic acids (OH-	
	SH-, NH- and CH-	
	acids). The concept	
	of pKa.	
	Factors affecting	
	the acidity and	
	basicity of organic	
	compounds.	
	Classification,	

24				
		nomenclature and isomerism of nitro compounds. Methods of obtaining. Nitration methods. Nitrating agents. Chemical transformations of nitro compounds. Acy-nitro- tautomerism in a number of nitro compounds. Influence of nitro group on reactivity of carbohydrogen radical. Nitration of aromatic hydrocarbons and its mechanism. Methods for identification of nitro compounds. Interaction with nitric acid. Reduction to amines. Spectral		
П-12	Diazo- and azocompounds. Azo-dyes. The methods of nitration of the organic compounds (continuation). The methods of diazotation and azo-coupling. Final test.	Diazo compounds. Classification, structure, nomenclature and isomerism. Methods of synthesis of diazonium salts. Diazotization reaction, conditions of its course and mechanism. Reactivity of diazonium salts. The structure of the diazocation. Reactions of diazonium salts with nitrogen evolving as an indirect method of removing the amino group from the aromatic	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

25		
	nucleus and a	
	method of	
	obtaining various	
	derivatives of	
	aromatic	
	hydrocarbons	
	Reaction of	
	diazonium salts	
	without nitrogen	
	evolving	
	Azo compounds	
	their structure	
	nomenclature and	
	isomerism	
	Methods of	
	preparation of azo	
	compounds	
	Reaction of	
	azocounling	
	conditions of its	
	conditions of its	
	and importance	
	Dhysical and	
	chamical properties	
	of ago compounds	
	A zo dves (methyl	
	orange methyl red)	
	and their indicator	
	properties	
	Theories of color	
	Chromophores	
	auxochromes	
	Importance of azo	
	compounds in	
	parmalinysis for	
	synthesis of drugs	
	dves and indicators	
	Diazotization	
	reaction	
	Conditions and	
	mechanism of its	
	performing.	
	Diazotizing agents	
	and necessary	
	catalysts.	
	Reactivity of diazo	
	compounds.	
	Azo coupling	
	reactions.	
	Conditions and	
	mechanism of azo	
	compound reaction	
	(diazo and azo	
	components).	
	Factors that prevent	

26				
		its implementation. Physical foundations of the theory of color. The concept of chromophores and auxochromes. Azo compounds as azo dyes, acid-base indicators (methyl orange, methyl red) and pharmaceuticals (salazopyridazine, salazodimethoxine) Significance of diazo and azo combination reactions in organic synthesis and formalanalysis.		
П-13	Aldehydes and ketones.	Tormalanalysis.Classification,nomenclatureandisomerismofaldehydesandketones.Methodsofpreparationofaldehydesandketones.WaysMethodsofpreparationofaldehydesandketones.Waysdirectintroductionofthecarbonylgroupgroupintothecarbonylgroupintothearomatic nucleus.Electronic structureofofcarbonylgroup.Reaction centers inmoleculesofaldehydesandketones.TheThe mechanism ofnucleophilicaddition reactions.InfluenceInfluenceofelectroniceffectsand spatial factorsonthereactions.Theroleofacidand basic catalysis.Reversibility of AN-reactions.Addition ofAdditionofwater,alcohols,sodium	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

27		
	hydrogen sulfite,	
	cvanide acid.	
	organomagnesium	
	compounds.	
	The mechanism of	
	addition-	
	elimination	
	reactions	
	Obtaining imines	
	ovimes hydrazones	
	and	
	semicarbazones	
	Use of oxime and	
	bydrazone	
	formation reactions	
	in qualitativa	
	analysis	
	Reactions	
	involving the CU	
	acid center	
	The structure of	
	anolate ion	
	Voto opol	
	Keto-elloi	
	Condensation of	
	condensation of	
	tumos	
	Uples.	
	Ratoronni reaction.	
	aldebydes and	
	ketones	
	Specific properties	
	of aromatic	
	carbonyl	
	compounds	
	Interaction with	
	ammonia	
	Cannitearo's	
	reaction	
	Cross aldol	
	condensation	
	Benzoin	
	condensation	
	Flectrophilic	
	substitution	
	reactions in the	
	henzene nucleus	
	Ouinones Methode	
	of production and	
	chemical	
	properties	
	Identification of	
	aldehydes and	
	ketones	
	Some	

28				
		representatives and their biological and medical significance (formaldehyde, acetaldehyde, acetone, acrolein, crotonic aldehyde, benzaldehyde, vanillin, acetophenone, benzophenone).		
Π-14	Monocarboxylic acids. Dicarboxylic acids. Methods of acylation.	Classification, nomenclature and isomerism of monocarboxylic acids. Obtaining methods. The structure of the carboxyl group and the carboxylate anion as p, π - conjugate systems. Acidic properties of carboxylic acids, salt formation. Dependence of acidic properties on electronic effects of substituents. Acidity and basicity of organic compounds. The concept of pKa. Brønsted–Lowry theories. Nucleophilic substitution reactions at a trigonal carbon atom, reaction mechanism. The role of acid and basic catalysis. Influence of carboxyl group on the course of chemical reactions on the hydrocarbon radical. CH-Acidity of α - carbon atom (Gel- Folgard-Zelinsky reaction, ester (ester)	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

29		
	condensation).	
	Addition against	
	Markovnikov's rule	
	in α . β -unsaturated	
	acids. Deactivating	
	and orienting	
	action of the	
	carboxyl group in	
	electrophilic	
	substitution	
	reactions (S_E) in	
	aromatic carboxylic	
	acids. Methods for	
	identification of	
	carboxylic acids.	
	Some	
	representatives of	
	monocarboxylic	
	acids (formic,	
	acetic, propionic,	
	butyric, valeric,	
	isovaleric, acrylic,	
	methacrylic,	
	benzoic, cinnamic	
	acids). Polyacrylic.	
	Classification,	
	nomenclature and	
	isomerism of	
	dicarboxylic	
	(dibasic) acids.	
	Obtaining methods.	
	Acidic properties	
	of dicarboxylic	
	acids. Structure and	
	stability of	
	carboxylate anion	
	and dianion.	
	Comparative	
	evaluation of the	
	pKa of some	
	Aliphatic acids.	
	hifunctional	
	derivatives	
	dicarboxylic acids	
	The relation of	
	dicarboxylic acide	
	to heat	
	Influence of	
	carboxyl groups on	
	the course of	
	chemical reactions	
	involving a	
	hydrocarbon	
	radical.	

30				
		Representatives of dicarboxylic acids and their practical use: oxalic, malonic, succinic, adipic, maleic, fumaric, phthalic acids. Phenolphthalein. Nylon. Identification of individual representatives of dicarboxylic acids. General characteristics and significance of the acylation reaction. Acylating agents and their activity. Acylation of alcohols and phenols. Acylation of amines. C-Acylation of aromatic hydrocarbons and their derivatives (Friedel-Crafts reaction). Reaction		
П-15	Functional derivatives of carboxylic acids: soaps, twins, waxes. Derivatives of carbonic acid. Methods of acylation (continuation).	Esthers. Nomenclature, obtaining methods, hydrolysis, amonolysis, transesterification. Anhydrides, halides as the main acylating reagents, their synthesis and properties. Amides of acids, nomenclature. Obtaining methods. Acid-base properties, hydrolysis, cleavage by hypobromites, dehydration. Hydrazides, nitriles. Their structure,	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

31				
		nomenclature,		
		synthesis methods		
		and properties.		
		Soaps. Synthetic		
		soap substitutes.		
		Waxes, twins.		
		Their structure.		
		Beeswax.		
		Spermaceti.		
		Carbonic acid		
		derivatives: acid		
		chlorides, amides,		
		urethanes.		
		Urea (carbonic acid		
		diamide). Its		
		properties:		
		hydrolysis, salt		
		formation,		
		interaction with		
		nitric acid and		
		hypobromites.		
		Guanidine		
		(imineurea). Basic		
П 1(II-1	properties.	D 4	7.1.1. N. DLD
11-10	Halogeno-,	Halogeno-,	3H-4	Zelisko N., PhD,
	acide	acids their	УМ-0 Vм 7	Professor
	actus.	structure	J 141-7	Subtaina I PhD
		classification		Associate Professor
		nomenclature and		Associate Floressoi
		isomerism		
		Stereochemistry of		
		halogeno-, hydroxy		
		acids		
		(enantiomeric,		
		diastereomeric,		
		optical activity,		
		relative		
		configuration,		
		racemates, meso-		
		forms).		
		Halogeno- acids.		
		Methods of		
		synthesis.		
		Acidic properties		
		depending on the		
		number of halogen		
		atoms and the		
		relative position of		
		halogen and		
		carboxyl group.		
		Formation of salts,		
		esters, nalides,		
		amides.		
		Inucleophilic		

32				
		substitution		
		reactions involving		
		a halogen atom		
		(conversion of		
		halogen acids to		
		hydroxy acids)		
		Practical usage		
		(chloroacetic g-		
		bromo-valeric		
		acid)		
		Hydroxy acids		
		(alcohol and		
		nhenolic acids)		
		Synthesis methods		
		Properties as		
		hifunctional		
		compounds The		
		iconversion of a-		
		β_{-} and γ_{-} hydroxy		
		p- and p-inyuroxy		
		Cleavage of g		
		hydroxy acids		
		under the action of		
		sulfuric acid		
		Decarboxylation of		
		phenolic acids		
		Practical		
		significance (lactic		
		y butyric malic		
		tartaric citric		
		salicylic gallic o-		
		hydroxycinnamic		
		acids and their		
		derivatives)		
		Ovoacide Methode		
		of obtaining		
		Properties as		
		hifunctional		
		compounds		
		Specific properties		
		(decarboxylation of		
		α - and β -oxo		
		acids)		
		Tautomerism dual		
		reactivity cleavage		
		and synthetic		
		importance of		
		acetoacetic ester		
		acetone (ketone)		
		bodies. Practical		
		usuge (pyruvic		
		oxaloacetic a-		
		ketoglutaric acids)		
П-17	Aminoalcohols.	Amino alcohols	Зн-4	Zelisko N., PhD.
	aminophenols,	aminophenols,	Зн-5	Associate

33				
33	aminoacids. Derivatives of p- aminobenzoic and sulfanilic acids. Methods of sulfonation.	amino acids, their structure, nomenclature, isomerism. Chemical properties of amino alcohols (choline and colamine) <i>in</i> <i>vivo</i> and <i>in vitro</i> . Catecholamine - dopamine, norepinephrine, adrenaline, their biosynthesis and properties. Spatial structure of adrenaline and noradrenaline. Chemical properties of aminophenols. Spatial structure of amino acids. Acid-base properties of amino acids. Chemical properties of amino acids. Specific chemical properties of amino acids. Specific chemical properties of amino acids. Specific chemical properties of amino acids. Medico-biological significance of amino alcohols and their derivatives as metabolites and drugs. p-Aminobenzoic acid. Structure, synthesis methods and chemical properties (acidity, basicity, amphotericity	Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	Professor, Subtelna I, PhD, Associate Professor
		synthesis methods and chemical properties (acidity, basicity, amphotericity, properties of carboxyl and amine groups) Derivatives of p- aminobenzoic acid - novocaine and		

34				
34		benzocaine (anesthesin). Structure, properties and medical significance. Sulfonic acids (sulfonic acids). Structure, chemical properties. Sulfanilic acid. Structure, synthesis, properties and significance in pharmacy. Sulfanilamide drugs - white streptocide (sulfanilamide), sulfacil (Sulfacetamide sodium). Sulfonation reaction. Sulfonating agents. Sulfonation of arenes. Influence of temperature on the direction of naphthalene sulfonation		
П-18	5-Membered heterocycles.	reaction. Heterocyclic compounds, their classification and nomenclature. Five-membered heterocycles with one heteroatom: pyrrole, furan, thiophene. Aromatic character. The structure of the pyrrole atom of Nitrogen. π -Excess aromatic systems. Acidophobicity of pyrrole and furan. Electrophilic substitution reactions (S _E). Peculiarityes of nitration,	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

35		
	halogenation	
	reactions of	
	acidophobic	
	heterocycles.	
	Reduction and	
	oxidation.	
	Specific properties	
	of pyrrole and	
	furan NH-Acidity	
	of pyrrole pyrrole	
	salts	
	Methods for	
	identification of	
	nyrrole furan and	
	thiophene	
	Indole	
	(benzonvrrole)	
	Acidonhobia NH-	
	Acid properties	
	Features of	
	electrophilic	
	substitution	
	reactions	
	Important	
	derivatives of five	
	membered	
	heterocycles with	
	one heteroatom:	
	furfural furacillin	
	nvrrolidine	
	tetrahydrofuran	
	polyvinylnyrrolido	
	ne porphine and	
	metallonorphins	
	(heme_chlorophyll	
	vitamin B12)	
	indoxyl indigo	
	indifoloc-	
	intocarmine	
	tridocarmino	
	carbino.	
	Five-membered	
	heterocycles with	
	two heteroatoms	
	(azoles) - pyrazole,	
	imidazole, thiazole,	
	oxazole, isoxazole.	
	Aromaticity. The	
	structure of the	
	nitrogen atom of	
	the pyridine type.	
	Synthesis methods.	
	Azole tautomerism	
	of imidazole and	
	pyrazole.	

36				
36	6-Membered heterocycles.	Acid-base properties. Electrophilic substitution reactions (SE). Reduction. Pyrazolone-3, tautomeric forms pyrazolone-3. Drugs: antipyrine, amidopyrine, analgin. Synthesis of antipyrine. Derivatives of five- membered heterocycles with two heteroatoms that are important: histidine, histamine, benzimidazole, dibazole, 2- aminothiazole (its synthesis and chemical properties). Thiazolidine is a structural fragment penicillin antibiotics. Six-membered heterocycles, their classification and nomenclature. Six-membered heterocycles with one Nitrogen heteroathom azines. Structure, aromaticity. Synthesis of pyridine. Chemical properties of pyridine. Chemical properties of pyridine. Reactions involving the nitrogen atom: basic and nucleophilic properties. Electrophilic Substitution	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
		Reactions (S_E) and nucleophilic		

37		
	substitution (S _N).	
	Reduction of	
	pyridine. Oxidation	
	of pyridine:	
	pyridine-N-oxide.	
	features of	
	chemical behavior	
	Homologues of	
	nvridine (α B v-	
	pyriane (a, p, j	
	hydroxy- and	
	aminonyridines	
	Their synthesis and	
	chemical	
	nroperties	
	Puridovine	
	(vitamin R)	
	(Vitalilli D ₆). Dyridingeorhovylig	
	(nicotinic and	
	(inconinc and	
	and their	
	dorivativos	
	(nigotingmide	
	(incotinamide,	
	isomiorid	
	ftivozido)	
	Application in	
	medicine	
	Methods of	
	synthesis of	
	quinoline (Skraun	
	synthesis)	
	isoquinoline	
	(Bischler -	
	Napieralski	
	reaction) and their	
	derivatives	
	Chemical	
	properties of	
	quinoline.	
	isoquinoline,	
	acridine.	
	Quinoline	
	derivatives: 8-	
	hydroxyquinoline,	
	its complexing	
	ability; quinozol,	
	nitroxoline (5-	
	NOC), application.	
	Acridine	
	derivatives: 9-	
	aminoacridine,	
	ethacridine lactate	
	(rivanol). Their	
	application.	

38		
	Six-membered	
	heterocycles with	
	one oxygen atom.	
	Features of the	
	structure of α - and	
	γ-piranes.	
	Structure and	
	chemical properties	
	of α - and γ -	
	pyrones. Pyryl	
	salts, their	
	aromaticity.	
	Benzopyrones:	
	coumarin,	
	chromone, flavone,	
	isoflavone.	
	Structure, chemical	
	properties.	
	Flavonoids:	
	luteolin, quercetin,	
	rutin. Tocopherol	
	(vitamin E).	
	Six-membered	
	heterocycles with	
	two nitrogen	
	heteroatoms -	
	diazines.	
	Structure, syntesis,	
	aromaticity of	
	diazines. Chemical	
	properties.	
	Electrophilic	
	substitution	
	reactions (S_E) and	
	nucleophilic	
	substitution (S_N) .	
	Hydroxy- and	
	amino derivatives	
	of pyrimidine	
	(uracil, thymine,	
	cytosine). Their	
	lactam-lactim	
	tautomerism.	
	Barbituric acid:	
	synthesis,	
	properties,	
	tautomeric forms.	
	Derivatives of	
	barbituric acid -	
	barbiturates as	
	drugs.	
	Vitamin B ₁ , orotic	
	acid. Their	
	biological and	
	medical	

39				
		significance. Thiazine, phenothiazine, their derivatives as drugs preparations		
Π_20	7-Membered	Classification and	311-1	Zelisko N. PhD
П-20	7-Membered heterocycles, fused heterocycles. Alkaloids Nucleic acids	phenothiazine, their derivatives as drugs preparations. Classification and nomenclature of condensed heterocyclic compounds. Purine (aromaticity, tautomerism, amphotericity). Hydroxy derivatives of purine: hypoxanthine, xanthine, uric acid. Their tautomerism and acid-base properties. Amino derivatives of purine (adenine, guanine), their tautomeric forms, biochemical significance in the formation of nucleotides and coenzymes. Methylated derivatives of xanthine (caffeine, theophylline, theobromine) as physiologically active compounds with action on the central nervous and cardiovascular systems. Murexide test is a qualitative reaction to compounds containing a purine puelaus	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
		Pteridine. Folic acid. Its antagonism with		
		sulfonamides. Riboflavin. Seven-membered		
		heterocycles. 1,4- benzdiazepine		

40		
	derivatives as	
	tranquilizers.	
	Alkaloids	
	(definition, their	
	importance as	
	biologically active	
	substances and	
	drugs)	
	Representatives of	
	alkaloids pyridine	
	groups (nicotine	
	anabasine	
	lobeline) quinoline	
	(quinine)	
	isoquinoline	
	(nanaverine	
	(papavernie,	
	codeine) tropana	
	(atroning) indolo	
	(reservine)	
	(leserpine). During and	
	nyrimidine bases	
	minor bases	
	Lactime lactom	
	tautomerism and	
	complementarity	
	Nucleosides Their	
	nomenclature	
	structure and	
	scheme of	
	formation The	
	nature of the bond	
	hetween the	
	heterocyclic base	
	and the	
	carbohydrate	
	residue	
	Hydrolysis	
	Nucleotides as	
	phosphorylated	
	derivatives of	
	nucleosides	
	(nucleoside mono-	
	di- and	
	triphosphates).	
	Their	
	nomenclature.	
	structure and	
	hydrolysis.	
	Nucleotide	
	coenzymes (ATP.	
	NAD ⁺ , NAD–H.	
	NADP ⁺ , NADP–H)	
	and their role in	
	biochemical	

41				
41	Monosaccharides	processes. ATP hydrolysis. Nucleic acids (DNA, RNA) as polynucleotides. The primary structure of DNA and RNA (nucleotide sequence). Secondary structure of DNA and factors that stabilize it. Genetic role of DNA. RNA types. The role of RNA in protein biosynthesis	Зн-4	Zelisko N. PhD
	Monosaccharides	Monosaccharides, their structure, classification and nomenclature. Stereoisomerism. D- and L- Stereochemical series. Haworth's formulas. Mutarotation. Conformations of cyclic forms of monosaccharides. Chemical properties of monosaccharides: Redox properties. Hemiacetal hydroxyl reactions. O-, N-, S- Glycosides, their relationship to hydrolysis. Esterification reactions. Monosaccharide identification reactions. Representatives: pentose (D-xylose, D-ribose, L- arabinose), hexose (D-glucose, D- galactose, D-	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

42				
		mannose, D- fructose), deoxy sugars (D- deoxyribose). D- glucuronic, D- gluconic acid, neuraminic acid. Amino derivatives of monosaccharides: glucosamine, galactosamine. L-ascorbic acid (vitamin C, properties). Products of reduction of monosaccharides: sorbitol, mannitol, dulcite		
П-22	Di- and polysaccharides	duicite.Disaccharides, theirstructureandnomenclature.Reducingdisaccharides(maltose,cellobiose, lactose),therelationshipbetweenmonosaccharideresiduesanditsspatial orientation.Cyclo-oxo-tautomerismandmutarotationofreducingdisaccharides.Chemicalpropertiespropertiesofreducingdisaccharides.Non-reducingdisaccharides(sucrose),bondsbetweenmonosaccharideresidues.Chemicalproperties of non-reducingdisaccharides.Sucrose inversion.Polysaccharides,theirclassification	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

43				
43	Proteinogenic amino acids. Peptides. Proteins.	and the principle of construction. Homopolysacchari des: starch (amylose, amylopectin), glycogen, cellulose, dextrans. structure of amylose and cellulose. Heteropolysacchari des, their structure. Structure structure and biomedical significance significance (mucopolysacchari des) des) nucopolysacchari des) des) nucopolysacchari des) glycosaminoglycan s (mucopolysacchari des) glycolipids. Structure glycolipids). Structure and classification of natural amino acids. Stereoisomerism of α-amino acids. Is	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
		and L- Stereochemical series. Bipolar structure of α -amino acids. Isoelectric point Chemical properties of natural amino acids. The structure of the peptide group. Primary structure of peptides and proteins. The concept of secondary, tertiary and quaternary structure of proteins. Synthesis of peptides. Protection		

44				
		andactivationoffunctional groups.Analysisofpeptidesandproteins.Partialandcompletehydrolysisofproteins.Qualitativereactionstoaminoacidsandproteins.		
П-24	Saponifiable lipids. Prostaglandins.	Lipids and their classification. Higher fatty acids (palmitic, stearic, oleic, linoleic, linolenic, arachidonic) are important structural components of saponifiable lipids, their structure, stereoisomerism, properties. The concept of biosynthesis of higher fatty carboxylic acids. Fats (triacylglycerols) as representatives of simple saponifying lipids, their structure, properties The concept of lipid peroxidation (LPO). Complex saponifiable lipids, their structure, classification. Glycerophosphatid es - derivatives of phosphatidic acids, their structure and properties. Representatives of glycerophosphatide s - lecithin, cephalins, phosphatidylserines , plasmalogen.	Зн-4 Ум-6 Ум-7	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

45				
		Structure of		
		sphingolipids:		
		ceramide and		
		sphingomyelins		
		Glycolinids The		
		concept of the		
		structure of		
		cerebrosides and		
		gangliosides		
		Medico biological		
		significance of		
		sanonifiable linids		
		Structure		
		properties and		
		biological role of		
		prostaglanding		
П 25	Noncononifiable	Derivatives of	2 rr /	Zalisko N. DhD
11-23	lipids (terpenes	menthane	JH-4 Vm 6	Associate
	arotenoide	(manthal tarnana)	Ум-0 Vм 7	Professor
	staroida)	(inclution, terpene),		California I DhD
	steroius).	nroportion and	AD-2	Subleina I, PhD,
		properties and	AD-3	Associate Professor
		applications in modicing		
		Ternonog their		
		respenses, then		
		classification		
		(acyclic,		
		bicyclic). Isoprene		
		rule.		
		Acyclic		
		monoterpenes		
		(geraniol, citral).		
		Monocyclic		
		monoterpenes		
		(limonene,		
		menthol, terpine),		
		their medical		
		significance.		
		Bicyclic		
		monoterpenes.		
		Camphor, its		
		structure, synthesis		
		and medical		
		significance.		
		Carotenoids, their		
		structure and		
		significance.		
		Ketinol (vitamin		
		A). β-Carotene		
		(provitamin A).		
		Chemistry of the		
		light transmission		
		process in the		
		body.		

46		
	Steroids, general	
	characteristics,	
	classification. The	
	structure of the	
	steran.	
	Stereoisomerism:	
	cis-trans-	
	articulation of	
	cyclohexane rings.	
	The structure of	
	hydrocarbons that	
	are the parent of	
	steroid groups	
	(estrane	
	androstane	
	nregnane cholan	
	cholestan)	
	Derivatives of	
	cholesterol	
	(sterols).	
	cholesterol	
	ergosterol vitamin	
	D2	
	Derivatives of	
	cholane (bile	
	acids): cholic	
	deoxycholic.	
	glycocholic acids.	
	Derivatives of	
	estrane (female sex	
	hormones): estrone	
	and estradiol. Their	
	structure and	
	biological role.	
	Derivatives of	
	androstane (male	
	sex hormones):	
	androsterone and	
	testosterone.	
	Structure and	
	biological role.	
	Derivatives of	
	pregnane	
	(corticosteroids):	
	corticosterone,	
	deoxycorticosteron	
	e, hydrocortisone.	
	Cardiac glycoside	
	aglycones:	
	digitoxygenin;	
	strophanthidine.	
	The general	
	principle of the	
	structure of cardiac	
	glycosides.	

47				
		Monosaccharides that are part of cardiac glycosides: digitoxose, digitalose, cymarose.		
робота 1)	Types of the chemical bonds. Quantum- mechanical bases of chemical bonding theory. Types of hybridization of atomic orbitals (Nitrogen, Oxygen). The main characteristics of covalent σ - and π - bonds. Electronic effects. The mutual influence of atoms in molecules.	Atomic and molecular orbitals. Types of hybridization: sp ³ , sp ² , sp. Types of chemical bonds (covalent, ionic, coordinate, semipolar). The concept of hydrogen bonding and its importance in the formation of structures of the molecule of proteins and nucleic acids. Electronic structure of σ - and π -bonds. Their characteristics (length, energy, polarity, polarization) Types of chemical bond breaking (homolytic, heterolytic), intermediate particles (carbocations, carbanions, free radicals), their electronic structure. Types of reagents (electrophiles, nucleophiles, free radicals). Conjugation and its types (π , π - and p, π -conjugation). Influence of electron delocalization on increasing the stability of conjugate systems. Conjugation energy.	3н-2 Зн-5	Zensko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

48				
		Conjugated open and closed chain systems. Aromaticity and its criterions. Interaction of atoms: inductive and mesomeric electronic effects. Electronreleasig and electronwithdrawin g substituents, their influence on the reactivity of molecules		
CPC-2	Methods of separation and purification of organic compounds.	The most important equipment used in organic synthesis for weighing, measuring, heating, cooling and filtering. Types of distillation (simple distillation, fractional distillation, steam distillation, vacuum distillation, vacuum distillation, vacuum distillation, vacuum distillation, vacuum distillation, vacuum distillation, vacuum distillation, vacuum distillation, steam distillation, steam distillatio	Зн-5 Ум-2 Ум-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

49				
		temperature.		
		Determination of		
		boiling point.		
		Determination of		
		refractive index		
		Determination of		
		density		
CPC 3	Conformers and	Configurations and	3 ₁₁ 1	Zelisko N. PhD
	isomers Newman	conformations of	Jn-1	Associate
	and Eischer	molecules		Drofessor
	projections	Conformations of		Subtalua I DhD
	Enontiomers and	open chains (ethane		Sublema I, FIID,
	diastaraomars	type: n butone 12		Associate Professor
	ulasici conici s.	dibromoothano		
		athylana glyaal)		
		Conformations of		
		contornations of		
		cyclonexane. Axial		
		handa equatorial		
		Mathada of		
		deniating the		
		depicting the		
		spatial structure of		
		Molecules:		
		Newman's		
		Fight or former lag		
		Fisher's formulas,		
		formulas		
		Iormulas.		
		Stereoisonnerisin.		
		trang) and mirror		
		Chirolity of		
		moloculos Onticol		
		isomorism		
		Epontiomers		
		Diastoroomorism		
		Diastereoinensin.		
		anfiguration		
		Glycerin aldebyde		
		as a configuration		
		standard		
		D- and I		
		stereochemical		
		series of chiral		
		molecules		
		Ontical activity and		
		racemates Concept		
		about wave to		
		separate ontical		
		antinodes Meso		
		compound		
		Relationship of		
		spatial structure		
		with hiological		
		activity.		

50				
CPC-4	Physical methods of determination of organic compounds structures.	Spectral methods of research of organic compounds. IR, UV, PMR and mass spectra. Characteristic frequencies of the most important functional groups (hydroxyl, carbonyl, amine groups).	3н-5 Ум-1 Ум-2 Ум-4 К-2 АВ-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-5	Types of chemical reactions and their mechanisms. Energy conditions of reactions.	Classification of chemical reactions by direction. Classification of chemical reactions by the method of bond breaking. Intermediate particles of chemical reactions: carbocations, carbanions and free radicals, their electronic structure. Electrophilic and nucleophilic reagents. Reagent and substrate. Mechanisms of chemical reactions. The role of the catalyst in the course of chemical reactions	3н-3 К-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
СРС-6 СРС-7	Reaction of polymerization and polycondensation.	Polymerizationofalkenes.Typesofpolymerization(freeradical,cationic,coordination).Polymerizationofconjugated dienes.NaturalNaturalandsynthetic rubber.PolymerizationPolymerizationofvinylhalides.Polyvinyl chloride.Polycondensationreactions.Multinuclear	Зн-3 Зн-4 Ум-1 АВ-2 Зн-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor Zelisko N., PhD,

51				
	polynuclear arenes depending on the number of cycles and their mutual location. Non- benzene aromatic systems.	arenas. Classification, electronic structure, aromatic character. Conjugation energy. Stability of multinuclear arenas depending on the number of cycles and their mutual location. Non-benzoid aromatic systems: cyclopentadienyl anion, ferrocene, cycloheptatrienyl cation (tropilium ion), azulene. The reason for their aromaticity.	Зн-4 Ум-1	Associate Professor, Subtelna I, PhD, Associate Professor
CPC-8	Triphenylmethane dyes	Dyes of a triphenylmethane row. Brilliant green, phenolphthalein. Properties, application.	Зн-4 Ум-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-9	Reactivity of halogenated hydrocarbons depending on the nature of the halogen and hydrocarbon radical.	Reactivity of halogenated hydrocarbons. Characteristics of the carbon-halogen bond. Factors affecting the mobility of halogen atoms. The reaction of nucleophilic substitution in haloalkanes and halogenarenes.	Зн-4 Ум-1 Ум-7 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-10	Synthesis and properties of naphtoles	Methodsofsynthesisofnaphthols.Chemicalpropertiesofnaphthols.	Зн-4 Ум-1 Ум-7 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-11	Methods of the identification of aromatic and aliphatic amines	Reaction of primary, secondary and tertiary amines of aliphatic and aromatic rows with nitric acid. An amino group identification	3н-4 Ум-1 Ум-7 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

52				
		reaction. Isonitrile probe. Detection of amino groups at UV and IR spectra.		
CPC-12	Physical bases of chromophore- auxochrome theory. Structure of azo dyes	Physical bases of dyes theory. The concept of chromophores and auxochromes. Azo compounds as azodyes, acid-base indicators (methyl orange, methyl red) and pharmaceutical preparations (salazopyridazine, salazodimethoxin).	3н-4 Ум-1 Ум-7 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-13	Hard and soft acids and bases	Acid and basic properties of organic compounds. Lewis's theory. The concept of hard and soft acids and bases.	Зн-2 Ум-1 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-14	Theoretical and practical aspects of oxidation and reduction reactions of different classes of organic compounds.	Oxidation and reduction reactions in organic chemistry. Oxidation of hydrocarbons, alcohols, ethers, thiols, amines. Reduction of unsaturated and aromatic hydrocarbons, nitro compounds.	Зн-2 Зн-4 Ум-1 К-1	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-15	Relationship between acidity and basicity of organic compounds. Amphotericity.	Acid and basic properties of organic compounds. Factors affecting the acidity and basicity of organic compounds. Amphotericity.	3н-2 Ум-1 К-1 АВ-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-16	Aldol condensation, its analogy <i>in vivo</i> .	Aldol condensation reaction. Conduction and mechanism. Aldol condensation reaction in the biosynthesis of	Зн-3 Зн-4 Ум-1 Ум-7 К-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

53				
		higher fatty acids.		
CPC-17	Decarboxylation reactions of carboxylic acids and their role <i>in</i> <i>vivo</i> .	Carboxylic acid decarboxylation reactions. Conditions of passage and their role in the body	3н-3 3н-4 Ум-1 Ум-7 К-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-18	Specific reactions of bifunctional carboxylic acids.	Specific properties of bifunctional carboxylic acids (reactions that occur when heated). The ratio of α -, β - and γ -hydroxy acids to heat. Decarboxylation of phenolic acids. Decarboxylation of α - and β -oxoacids. Specific chemical properties of α -, β - and γ -amino acids.	3н-3 3н-4 Ум-1 Ум-7 К-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-19	Drug bearing carbonylic, carboxylic groups, and heterofunctional compounds as a drugs.	Drugs, the structural basis of which are fragments of molecules of aldehydes, carboxylic acids and heterofunctional compounds. Structure and medico-biological action.	3н-4 Ум-1 К-1 К-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-20	Stereochemistry of hydroxy and amino acids.	Stereochemistry of hydroxy and amino acids (enantiomerism, diastereomerism, optical activity, relative configuration, racemates, meso- forms).	Зн-4 Ум-1 К-1 К-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
CPC-21	Three-, four-, and seven-membered heterocycles.	Structure, nomenclature, isomerism, synthesis methods, chemical properties and biological role of three-, four- and seven-membered heterocycles.	Зн-4 Ум-1 Ум-7 К-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

54	54				
CPC-22	Identification of key monocyclic and fused bicyclic heterocyclic system.	Methods of identificat ion of pyrrole, furan and thiophene Murexide test is a qualitative reaction to compounds containing a purine nucleus	Зн-4 Ум-1 Ум-7 К-1 К-2	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor	
CPC-23	Pyridine-carboxylic acids based drugs.	Pyridinecarboxylic (nicotinic and isonicotinic) acids and their derivatives (nicotinamide, cordiamine, isoniazid, ftivazide). Application in medicine.	3н-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor	
CPC-24	The structure of heteropolysacchari des and their role in the body.	Heteropolysacchari des, their structure. Structure and biomedical significance of glycosaminoglycan s (mucopolysacchari des) - chondroitin sulfates, hyaluronic acid, heparin.	3н-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor	
CPC-25	Mentane and its derivatives: synthesis, structure, and practical usage.	Derivatives of menthane (menthol, terpene), their structure, properties and applications in medicine.	3н-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor	
CPC-26	Nucleic acids and their role in transmission of genetic information.	Nucleic acids (DNA, RNA) as polynucleotides. Primary structure of DNA and RNA (nucleotide sequence). Secondary structure of DNA and factors that stabilize it. Genetic role of DNA.	Зн-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor	
CPC-27	Phospholipids: structure,	Glycerophosphatid es - derivatives of	Зн-4 Ум-1	Zelisko N., PhD, Associate	

55				
	properties and biological role.	phosphatidic acids, their structure and properties. Representatives of glycerophosphatide s - lecithin, cephalins, phosphatidylserines , plasmalogens.	K-1 K-2 AB-1 AB-2 AB-3	Professor, Subtelna I, PhD, Associate Professor
CPC-28	O-, and N- glycosides: spreading in nature and biological function.	O-, N - Glycosides, their relationship to hydrolysis. Nucleosides. Their nomenclature, structure and scheme of formation. The nature of the bond between the heterocyclic base and the carbohydrate residue. Hydrolysis. Cardiac glycoside aglycones: digitoxygenin; strophanthidine. The general principle of the structure of cardiac glycosides. Monosaccharides that are part of cardiac glycosides: digitoxose, digitalis, cimarose.	Зн-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor
СРС-29	Prostaglandins: classification and biological function.	Structure, properties and biological role of prostaglandins.	3н-4 Ум-1 К-1 К-2 АВ-1 АВ-2 АВ-3	Zelisko N., PhD, Associate Professor, Subtelna I, PhD, Associate Professor

Teaching methods are explanatory-illustrative, problem-solving, partial-search. When studying organic chemistry, students use textbooks, lecture notes, guidelines, chemical computer programs, models of molecules, laboratory equipment and utensils needed to perform experiments, appropriate reagents.

According to the curriculum, the methods of organization and implementation of educational activities are:

a) lectures

b) practical classes

c) out of class work of students.

The topics of the lecture course reveal the problematic issues of the relevant sections of bioorganic chemistry.

Lecture material is presented using multimedia equipment, computer, video clips, graph projector,

models of organic molecules and demonstration experiments.

Practical classes according to the methods of their organizations are laboratory because they include: laboratory research on synthesis and detection of certain classes of organic compounds by the properties of their functional groups, qualitative reactions, synthesis of organic compounds, their isolation and purification, the establishment of physicochemical constants.

It is recommended that students in laboratory classes briefly record research protocols, indicating the purpose of the study and conclusions.

Students also use exercises and solve situational problems. The practical classes use computer programs ISIS DRAW, HyperChem, Chemistry in motion, video clips developed by the department, models of molecules.

The structure of the organization of practical classes includes:

- 1. Discussion and explanation of the most difficult issues of the topic;
- 2. Written test;
- 3. Performance of practical (laboratory) works.
- 4. Registration of the protocol of practical employment.
- 5. The result of the lesson
- Independent work of students includes:
- 1. Elaboration of literature on this topic.

2. Solving training exercises and tests.

8. Verification of learning outcomes

Carried out in each lesson according to specific goals, as well as during the individual work of the teacher with the student for those topics that the student develops independently and they are not part of the structure of the practical lesson. A standardized form of control of theoretical and practical training of students is used.

The standardized form of control of the theoretical part includes 10 tasks. Five of them of the first level are test (1 point each), and five tasks of the second level, to which in addition to the test answer you need to give a written answer (2 points each).

Assessment of practical training of students - as a result of the practical part - is made in the form of a protocol.

At the end of each of the 4 content modules on which the discipline is structured, the student writes a final test, which includes 50 tests of A format (1 point) and 3 theoretical questions (10 points).

The final grade for the current educational activity is set on a 4-point (national) scale.

Criteria for evaluating current learning activities:

A grade of "5" (excellent) is given to a student who actively participated in the discussion of the most difficult questions on the topic of the lesson, gave at least 90% correct answers to standardized test tasks, answered written tasks without errors, did practical work and drew up a protocol.

Grade "4" (good) is given to the student who participated in the discussion of the most difficult questions on the topic, gave at least 75% correct answers to standardized test tasks, made some minor mistakes in answering written tasks, did practical work and drew up a protocol.

Grade "3" (satisfactory) is given to a student who did not participate in the discussion of the most difficult questions on the topic, gave at least 60% correct answers to standardized test tasks, made significant mistakes in answering written tasks, did practical work and drew up a protocol.

Grade "2" (unsatisfactory) is given to a student who did not participate in the discussion of the most difficult questions on the topic, gave less than 60% of correct answers to standardized test tasks, made gross mistakes in answering written tasks or did not answer them at all. performed practical work and did not draw up a protocol.

Learning outcome	Code of the type of	Method of	Enrollment criteria
code	classes	verification of	
		learning outcomes	
Зн-1	П-1	1. Acquaintance	evaluation according to the established
Ум-1		with the	criteria on a traditional 4-point scale
К-2		organization and	
		procedure of	
		practical classes in	
		organic chemistry.	

56

57			
	П 2	 Acquaintance with safety precautions and rules of work in a chemical laboratory. Consideration of the basic principles of classification and nomenclature of organic compounds and types of structural isomerism. Acquaintance with the equipment used in the chemical laboratory. Performing training exercises and tests. 	avaluation according to the established
Зн-2 Зн-5	П-2 CPC-1	 Control of home self-preparation. Solving training exercises. Control of knowledge of theoretical material. Work with chemical utensils and laboratory equipment, assembly of equipment for various distillation methods, etc. 	evaluation according to the established criteria on a traditional 4-point scale
Зн-5 Ум-1 Ум-2 Ум-3 Ум-4 К-2	П-3 СРС-2	1.Checkingthepreparationofstudentsforclasses.2.Demonstrationofmethodsforisolationandpurificationpurificationoforganic compounds3.Familiarity withthemethodsoforganiccompounds.4.Performancebystudentsofa	evaluation according to the established criteria on a traditional 4-point scale

4	58			
			practical part of the class.	
	Зн-1	П-4 СРС-3	 Control of homework. Consideration on models, computer programs and tables of the spatial structure of organic compounds, conformations and configuration states of molecules and methods of their representation. Solving training exercises and monitoring their implementation. Practical part: - a compilation of models of chiral molecules of lactic and tartaric acids; - assembly of ethane, butane and ethylene glycol conformation models. 	evaluation according to the established criteria on a traditional 4-point scale
	3н-3 3н-4 Ум-1 Ум-2 Ум-5 Ум-7 К-2	П-5 СРС-4 СРС-5	 Control of home self-preparation. Solving training exercises. Monitoring their implementation. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Ум-6 Ум-7	П-6 СРС-6	 Control of home self-preparation. Solving training exercises. Monitoring their implementation. Performing of experiments. Control of mastering the topic from theoretical material and from 	evaluation according to the established criteria on a traditional 4-point scale

59			
		performed	
		experiments.	
Зн-4 Ум-6 Ум-7	П-7 СРС-7 СРС-8	 Control of home self-preparation. Solving training exercises. Monitoring their implementation. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. Writing the final text 	evaluation according to the established criteria on a traditional 4-point scale
Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	П-8 СРС-9	test.1. Discussion of the main points of the topic.2. Test control of knowledge.3. Solving training exercises and monitoring their implementation.4. Performing of experiments.5. Verification of theoretical preparation of students for synthesis.6. Performing of syntheses.7. Control of mastering of theoretical part (performed experiments and syntheses) of the	evaluation according to the established criteria on a traditional 4-point scale
3н-4 3н-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 AB-1	П-9 СРС-14	1. Continuation of synthesis1. Continuation of synthesissynthesisand calculationcalculationof product yield.2.Homework control.3. Solving training exercisesexercisesand monitoring their implementation.4.Execution4.	evaluation according to the established criteria on a traditional 4-point scale

(60			
			experiments. 5. Control of mastering the topic from theoretical material and from performed experiments.	
	Зн-4 Ум-6 Ум-7	П-10 СРС-10	 Control of home self-preparation. Solving training exercises. Monitoring their completion. Execution of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	П-11 <u>СРС-11</u> <u>СРС-13</u> <u>СРС-15</u>	 Consideration of the main points of the topic. Execution of training exercises and control of their completion. Checking the synthesis plan and the correctness of the assembly of equipment. Execution of experiments and syntheses. Control of theoretical knowledge and acquired practical skills. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	П-12 СРС-8	1Finishing of experiments2. Consideration of the main points of the topic.3. Checking the theoretical preparation of students for synthesis.4. Test control of knowledge.5. Execution of syntheses (methyl	evaluation according to the established criteria on a traditional 4-point scale

(51			
			 orange, β-naphthol orange). 6. Control of synthetic work. 7. Writing the final test. 	
	Зн-4 Ум-6 Ум-7	П-13 СРС-16	 Control of home self-preparation. Solving training exercises. Execution of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	П-14 СРС-17	 Control performance of home self-training. Solving of educational exercises. Support of molecules models. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Зн-5 Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 АВ-1	П-15	 Control of mastering the topic from theoretical material and from performed experiments. Control performance of home self-training. Solving of educational exercises. Performing of experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Ум-6 Ум-7	П-16 СРС-18	 Control performance of home self-training. Solving of educational exercises. Performing of 	evaluation according to the established criteria on a traditional 4-point scale

,	62			
	52 Зн-4 Эт 5	П-17	experiments. 4. Control of mastering the topic from theoretical material and from performed experiments. 1. Control	evaluation according to the established
	Ум-1 Ум-2 Ум-3 Ум-6 Ум-7 Ум-8 AB-1	<u>CPC-19</u> <u>CPC-20</u>	home self-training. 2. Control of mastering the topic from theoretical material and from performed experiments. 3. Execution of syntheses and registration of protocols. 4. Writing of final control work.	criteria on a traditional 4-point scale
	Зн-4 Ум-6 Ум-7	П-18 СРС-21	 Control performance of home self-training. Solving of educational exercises. Support of molecules models. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
	Зн-4 Ум-6 Ум-7	П-19 СРС-23	 Control performance of home self-training. Consideration of models, slides and structures of structure and reactivity of six- member heterocyclic compounds. Solving of educational exercises. Scoring models of molecules of six-membered 	evaluation according to the established criteria on a traditional 4-point scale

63			
3н-4 Ум-6	П-20 СРС-22 СРС-22	heterocycles. 5. Performing of experiments. 6.Control assimilation of the topic theoretical material and the experiments performed. 1. Control performance of	evaluation according to the established criteria on a traditional 4-point scale
У М- /	CPC-26	 home self-training. Solving of educational exercises. Consideration in the schemes of the structure of nucleosides, nucleic acids. Support of molecules models. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	
Зн-4 Ум-6 Ум-7	П-21 СРС-28	 Control performance of home self-training. Consideration of models, slides and structures of structure, reactivity and relationship between structure and pharmacological effects of monosaccharides derivatives. Solving of educational exercises. 4. Performing of experiments. 5. Control assimilation of the topic theoretical material and the 	evaluation according to the established criteria on a traditional 4-point scale

64			
		experiments performed.	
Зн-4 Ум-6 Ум-7	П-22 СРС-24 СРС-28	 Control performance of home self-training. Solving of educational exercises. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
Зн-4 Ум-6 Ум-7	П-23	 Control performance of home self-training. Solving of educational exercises. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
Зн-4 Ум-6 Ум-7	П-24 СРС-27	 Control performance of home self-training. The consideration on the schemes of the issues of structure and reactions occurring in vivo and in vitro. Solving of educational exercises. Performing of experiments. Control of mastering the topic from theoretical material and from performed experiments. 	evaluation according to the established criteria on a traditional 4-point scale
Зн-4 Ум-6 Ум-7 АВ-2	П-25 СРС-25 СРС-29	1.Controlperformanceofhome self-training.2.Consideration of	evaluation according to the established criteria on a traditional 4-point scale

65		
AB-3		models, slides and
		structures of
		structure, reactivity
		and interconnection
		structure-
		pharmacological
		effects of
		derivatives of
		mentan, terpenes,
		carotenoids and
		steroids. (3.
		Solving of
		educational
		exercises.
		4. Performing of
		experiments.
		5. Control of
		mastering the topic
		from theoretical
		material and from
		performed
		experiments.
		6. Writing a final
		control work.
	•	Final control
General evaluation	Participation in the w	ork during the semester / exam - 60% / 40% on a 200-point scale
system	_	
Rating scales	Traditional 4-point sc	cale, multi-point (200-point) scale, ECTS rating scale
Conditions of	The student attended	all practical (laboratory, seminar) classes and received at least 72
admission to the	points for current per	formance
final control		
Type of final	Methods of final	Enrollment criteria
control	control	
Exam	The exam is held	Enrollment of the test task of the I level:
	during the	correct answer -1 point, incorrect answer - 0 points.
	examination	The answer to the theoretical problem of the II level is estimated
	session according	from 0 to 3 points:
	to the schedule and	correct letter answer -1 point,
	includes:	incorrect letter answer - 0 points.
	50 tests (Form A),	The written task is evaluated from 0 to 2 points.
	which are	The maximum number of points that a student can score when
	evaluated by 1	taking the exam is 80.
	point (50 minutes),	The minimum number of points in the exam - not less than
	6 "open" questions,	50.
	which are	
	evaluated by 5	
	points (40 minutes)	
The maximum num	bar of points that a stu	ident can score for the current academic activity for admission to

The maximum number of points that a student can score for the current academic activity for admission to the exam is 120 points.

The minimum number of points that a student must score for the current academic activity for admission to the exam is 72 points.

The calculation of the number of points is based on the grades received by the student on a 4-point (national) scale during the study of the discipline, by calculating the arithmetic mean (CA), rounded to two decimal places. The resulting value is converted into points on a multi-point scale as follows:

66

9. Course policy

The student must independently complete homework, training exercises and tests, tasks of current and final control. It is not allowed to spy on another student's work, write off, use a textbook, notebook or mobile phone while writing a test, final or exam paper, use cheat sheets, copy your work by other students. Omissions of practical classes are not allowed. If a student misses classes for good reasons, which are documented, he has the right to practice them.

10. Literature

The main literature

- 1. J. Komarytsia. Organic Chemistry. Handbook for pharmaceutical students. Lviv 2000.-151 p.
- 2. B.S.Zimenkovsky, V.A. Muzychenko, I.V.Nizhenkovska, G.O.Syrova. Biological and bioorganic chemistry. Aus Medicine Publishing. Kyiv.2018. 288 p.

The additionary literature

- 1. Stoker, H.S. (2001). Organic and biological chemistry. Houghton Mifflin. 2001. 556p.
- 2. L.G. Wade Jr. Organic Chemistry. 8th edition. Pearson. 547p.
- 3. T. Graham Solomons. Organic Chemistry. Sixth edition. John Willey and Sons, Inc.- 1218 p.
- 4. Harold Hart, Leslie E. Crain, David J. Hart. Organic Chemistry. A Short Course. Houghton Mifflin Company. 543 p.
- 5. David C. Eaton. Laboratory investigation in Organic Chemistry. McGRAW-HILL BOOK COMPANY. New York Toronto. 893 p.

Information resources

- 1. www.ncbi.nlm.nih.gov/PubMed free access to the database of scientific research in the field of biomedical sciences.
- 2. https://pubchem.ncbi.nlm.nih.gov/ free access to the database of scientific data in the field of biomedical sciences.
- 3. http://www.orgsyn.org has provided the chemistry community with detailed, reliable, and carefully checked procedures for the synthesis of organic compounds.
- 4. http://www.organic-chemistry.org offers an overview of recent topics, interesting reactions, and information on important chemicals for organic chemists.
 6.www.bioorganica.org.ua a scientific publication that presents works on bioorganic and medical
 - 6.www.bioorganica.org.ua a scientific publication that presents works on bioorganic and medical chemistry.

11. Equipment, logistics and software of the discipline

Equipment for laboratory work in the discipline, chemical utensils, reagents, multimedia projector for classes, overhead projector, computers, Internet for individual tasks, platform for distance learning MISA; thematic tables, molecule models, methodical instructions for practical and independent work are posted on the MISA distance learning service and are freely available to students.

12. Additional information

The department has a permanent student research group.

The Syllabus was developed by: Ivanna Subtelna, PhD, Associate Professor

Head of Department of Pharmaceutical, Organic and Bioorganic chemistry Prof. R.B. Lesyk